 Grant Agreement  University of Jyvskäylä Press Release 
Enrico Le Donne
 Personal website 
Thibaut Dumont
Matthew Romney
Francesca Tripaldi
Fares Essebei
Eero Hakavuori
Ville Kivioja
Terhi Moisala
The Jyväskylä Geometry seminar is on Mondays afternoons
in the Department of Mathematics and Statistics.
The meeting is usually from 14:15 to 16:00 in room MaD 380.
Please, check in advance the calendar below.
See all current Seminars  Analysis Seminar 
Past Seminars: 2017  (older) 
18^{th}22^{nd} February 2019  Jyväskylä (Finland)
SubRiemannian Geometry and Beyond, II
 Website 
Past Events  
February/2018  SubRiemannian Geometry and Beyond Jyväskylä (Finland) 
We warmly thank the CVGMT Team for the support and
for hosting the following papers at CVGMT server.
Blowups and blowdowns of geodesics in Carnot groups (2018)  
E. Hakavuori, E. Le Donne We study infinitesimal and asymptotic properties of geodesics (i.e., isometric images of intervals) in Carnot groups equipped with arbitrary subFinsler metrics. We show that tangents of geodesics are geodesics in some groups of lower nilpotency step. Namely, every blowup curve of every geodesic in every Carnot group is still a geodesic in the group modulo its last layer. With the same approach, we also show that blowdown curves of geodesics in subRiemannian Carnot groups are contained in subgroups of lower rank. This latter result can be extended to rough geodesics. 

Restricting open surjections (2018)  
J. Jaramillo, E. Le Donne, T. Rajala (Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas) We show that any continuous open surjection from a complete metric space to another metric space can be restricted to a surjection for which the domain has the same density character as the target. This improves a recent result of Aron, Jaramillo and Le Donne. 

A note on topological dimension, Hausdorff measure, and rectifiability (2018)  
G. David, E. Le Donne The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$dimensional Hausdorff measure of $X$, $H^n(X)$, is finite. Suppose further that the lower $n$density of the measure $H^n(X)$ is positive, $H^n(X)$almost everywhere in $X$. Then $X$ contains an $n$rectifiable subset of positive $H^n(X)$measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of CsörnyeiJones. 

Please, contact the PI if you are interested to do a Ph.D. or a postdoc
in the framework of GeoMeG ERC project.
New positions will be open in the next years.
Prof. Enrico Le Donne
Website and PHP/MySql code developed by Augusto Gerolin based on bootstrap.