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Introduction
• Want to model sensor array data with multiple 

independent sources — ICA

• Non-stationary source activity — mixture model

• Want the adaptation to be computationally 
efficient — Newton method
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• Introduction

– Non-stationarity in EEG

– What is a mixture model?

• ICA Mixture Model

– Model definition

– Computational feasibility and Newton Method

• Examples

– Application to epileptic seizure ECoG data

– Application to typical EEG task data

• Implementation

– Parallel computation

Outline
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Non-stationarity

• What kinds of non-stationarity exist in EEG?

– Environmental transients—lights, train, A/C

– Different brain sources for different tasks

– Muscle activity

– Arousal level change

– Seizure

• Are  EEG components stable over recording? Which 
are and which are not?

• We approach this problem by using a mixture model 
of component bases with separate component maps 
and source statistics
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What is a Mixture Model?

• A mixture model is a probabilistic combination of 
several models:

• Each data point modeled as being generated by one 
of the models in the mixture
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Mixture vs. Overcomplete

• Approach 1 – Overcomplete dictionary

• Approach 2 – Mixture of bases (like best basis selection)

• Assumptions:
– At a given time at most num channels basis vectors present
– Basis vectors do not combine arbitrarily but form subsets or 

groups of commonly occurring or mutually exclusive features
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Computational Feasibility
• We will use an iterative algorithm, in which the basic 

steps are:
– Estimate the independent source activations given models
– Update models given estimated sources

• For large dimensional problems estimation of sources 
by iterative or even one-step methods takes non-trivial 
time, requiring inversion of a matrix for each sample
– Example: data = 100 x 1,000,000, time to get sources = 1 

ms per sample, one complete iteration takes at least 1000 
seconds = 15 minutes, 500 iterations takes 6 days

– Need iterations to be order seconds, so need source 
estimation to be very fast (less than 1ms) – use simple 
matrix multiplication, can’t afford inversion
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ICA Mixture Model
• Want to model observations x(t), t = 1,…,N, 

different models “active” at different times

• Bayesian linear mixture model, h = 1, . . . , M :

• Conditionally linear given the model,  :

• Samples are modeled as independent in time:
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• Each source density mixture component has 
unknown location, scale, and shape:

• Generalized Gaussian 
mixture model is
convenient and flexible

Source Density Mixture Model
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Sub- and Super-Gaussian sources
• With mixture source model, model sources can be 

sub- or super-Gaussian, no need to check

• Newton method converges very fast, natural gradient 
(Lee et al.) is slow or fails to converge, has difficulty on 
poorly conditioned models
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ICA Mixture Model—Invariances 

• The complete set of parameters to be 
estimated is:

h = 1, . . ., M,   i = 1, . . ., n,   j = 1, . . ., m

• Invariances: W row norm/source density scale 
and model centers/source density locations:
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• Transform gradient (1st derivative) of cost 
function using inverse Hessian (2nd derivative)

• Cost function is data log likelihood:

• Gradient:

• Natural gradient (positive definite transform):

Basic ICA Newton Method
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• Take derivative of (i,j)th element of gradient 
with respect to (k,l)th element of W :

• This defines a linear transform :

• In matrix form, this is:

Newton Method – Hessian
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• To invert: rewrite the Hessian transformation       
in terms of the source estimates:

• Define ,                  ,               :

• Want to solve linear equation                :

Newton Method – Hessian
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Newton Method – Hessian 

• The Hessian transformation can be simplified 
using source independence and zero mean:

• This leads to 2x2 block diagonal form:
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• Invert Hessian transformation, evaluate at 
gradient:

• Leads to the following equations:

• Calculate the Newton direction:

Newton Direction
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Positive Definiteness of Hessian

• Conditions for positive
definiteness: 

• Always true for true when model source 
densities match true densities:

1)

2)

3)
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• Similar derivation applies to ICA mixture model: 

Newton for ICA Mixture Model
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• Convergence is really much faster than natural 
gradient. Works with step size 1.0!

• Need correct source density model
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Natural Gradient Vs. Newton

• 3 models in two dimensions, 500 pts per model

• Newton method converges, natural gradient 
(Lee et al.) is slow or fails to converge, has 
difficulty on poorly conditioned models
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Epilepsy
• Data: 15 minutes from 1 subject containing 2 seizures

• Single model does not represent seizure well

• We learned 5 models – new models consistently adapt 
to portions of seizure
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• Maps from grid of electrodes placed intercranially over 
seizure area

• Source probability densities are fit by mixture model

Epilepsy Grid Maps
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Segmentation of Tasks



• Data recording supervised by Julie Onton

• Subject presented with sequence of letters 
and must respond whether current letter is 
the same as the one two letters back

Twoback Task

C A B A B B
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Correct

Response:
No Yes Yes No



bt73 segmentation
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• Task trials are represented by green and blue models

• Inter-task intervals represented by red and cyan model

• Eye blinks represented by magenta model



bt73 segmentation zoom (green)
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• Task trials are represented by green and blue models

• Inter-task intervals represented by red and cyan model

• Eye blinks represented by magenta model



bt73 green model data
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bt73 blue model data

Interbrain ICA Conference,  Jyväskylä, Finland,  June 12-13,  2010



bt73 red and cyan model data
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bt73 rejected data
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bt73 single model components
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bt73 green model components
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• Prominent alpha and frontal midline components

• Weak mu components



bt73 blue model components
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• Prominent alpha and central midline components

• Weak mu components

• Different occipital alpha components (7, 8)



bt73 red model components
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• Prominent alpha and central midline components

• Lateral eye movement component (4)

• Tangential occipital component (17)



bt73 cyan model components
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• Prominent eye-blink components (1-5)

• Lateral eye-movement (6)



bt73 magenta model components
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• Mostly eye-blink components (1-12)

• Frontal midline component (13)



bt73 green model alpha 
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• Components have more power in segments 
represented by model than in non-model segments



bt73 green model frontal midline 
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• Component again has more power in segments 
represented by model than in non-model segments



bt73 green model power line comp 
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• Sub-Gaussian component represented by mixture 
model of Generalized Gaussian densities



bt73 blue model alpha 
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• Alpha peak shifted in model segments shifted slightly 
higher than in non-model time segments



eb79 segmentation
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• Task trials are represented by blue, green, and red models

• Red model contains muscle activity not present in blue and green

• Eye blinks represented by cyan and magenta models



eb79 blue model data
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eb79 blue model data
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eb79 red model data
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bt73 single model components
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eb79 blue model components
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• Prominent midline and occipital alpha components

• Weak mu components



eb79 green model components
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• Prominent occipital alpha components

• Weaker frontal midline



eb79 red model components
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• Prominent muscle components (4, 5, 6, 13, 14, 17, 18)



ld81 and dh84 segmentation
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Consistency over Number of Models

trial trial

3 models 4 models

log

likelihood

log

likelihood

iteration iteration

time time
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Parallel architecture

Data in segments and blocks

Multiple 
model 
node 
comm

Data segment node comm

Cores for 
this data 
block
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Parallel architecture (cont.)
• Parallelization is implemented using MPI to parallelize over nodes, 

and OpenMP to parallelize over cores within a node (using shared 
memory)

• Data is divided into segments (assigned to nodes) and blocks 
(assigned to cores)

• Multiple nodes are devoted to the same segment, one for each 
model

• An “update” is computed for each segment. Two directions of data 
communication flow:
– Model nodes communicate to normalize update by likelihood of 

segment over all models
– Segment nodes communicate to average the segment updates into one 

global update of parameters

• Global update computed at root node and sent back to model and 
segment nodes

• Also implemented with unstructured collection of cores for random 
assignment on large cluster

• Portable implementation allows execution on many platforms, 
including Teragrid, an NSF project with NCSA, SDSC, and others
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Take Home Messages
• With sufficient amount of data, multiple ICA models can be 

estimated simultaneously and used overcome non-
stationarity and segment data.

• Newton method significantly improves convergence rate, and 
conditioning in multiple model case.

• Arbitrary source densities modeled with non-Gaussian source 
mixture model.

• Likelihood can be conveniently used to reject data.

• Some EEG sources really are stationary (eyes, heartbeat, 
power line, frontal midline, mu, etc.) These should be 
identified across models to improve efficiency of estimation 
(in progress). Alpha components seem to be variable.



Code and Papers

• There is Matlab code available!

– Generate toy mixture model data for testing

– Full method implemented: mixture sources, 
mixture ICA, Newton

• Paper draft available, with derivation of 
mixture model Newton updates

• Download from:

http://sccn.ucsd.edu/~jason

http://sccn.ucsd.edu/~jason
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