Reference identification by BSS

R. Ranta, R. Salido-Ruiz, V. Louis-Dorr, L. Koessler

Nancy-Université

Introduction

EEG acquisition :

Introduction

Independent reference

Mixed reference

Thank you.

- electrical potentials on the scalp or inside the skull
- differentially measured to a non-nul time varying reference electrode (common reference)

Objective :

- estimate the zero-referenced potentials
- classical solutions: average montage, bipolar, laplacian
- recent approaches : BSS (Hu et al., 2007, 2008)

Introduction

EEG acquisition :

Introduction

Independent reference

Mixed reference

Thank you.

- electrical potentials on the scalp or inside the skull
- differentially measured to a non-nul time varying reference electrode (common reference)

Objective :

- estimate the zero-referenced potentials
- classical solutions: average montage, bipolar, laplacian
- recent approaches : BSS (Hu et al., 2007, 2008)

Independent reference

Mixed reference

Independent reference

Independent reference

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation
- Depth EEG application

Mixed reference

- Classical BSS : linear mixing, (zero referenced)
 - $\boldsymbol{x} = \boldsymbol{A}\boldsymbol{s} \tag{1}$
- *x*: *M* observed signals (EEG measured signals)
- s: N 'independent' unknown sources
- A: mixing matrix

Independent reference

Classical BSS : linear mixing, (zero referenced)

- $\boldsymbol{x} = \boldsymbol{A}\boldsymbol{s} \tag{1}$
- *x*: *M* observed signals (EEG measured signals)
- s: N 'independent' unknown sources
- A: mixing matrix

Independent common reference CR montage

$$\boldsymbol{x}_{c} = \boldsymbol{x} - r \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} = \begin{bmatrix} -1\\ \boldsymbol{A} & \vdots\\ -1 \end{bmatrix} \begin{bmatrix} \boldsymbol{s}\\ r \end{bmatrix} = \boldsymbol{Q}_{c} \begin{bmatrix} \boldsymbol{s}\\ r \end{bmatrix}, \quad (2)$$

- $\boldsymbol{x}_c M$ measured signals, common reference (CR)
- Q_c: constrained mixing matrix
- s, r: N + 1 'independent' sources and reference (let M = N + 1)

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation
- Depth EEG application

Mixed reference

	Estimating the reference: proposed algorithm		
	Ideal BSS solution: separation matrix B such as		
Introduction	$\boldsymbol{B}\boldsymbol{Q}_{c}=\mathbb{I}_{M}$		
Independent reference Proposed algorithm Scaling Simulation Depth EEG application	with $oldsymbol{B} = oldsymbol{U}oldsymbol{W}$		
Mixed reference	a matrix product between a rotation $oldsymbol{U}$ and a whitening $oldsymbol{W}$		
Thank you.			

+

 $BQ_{c} = \mathbb{I}_{M}$

B = UW

Ideal BSS solution: separation matrix B such as

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation
- Depth EEG application

Mixed reference

Thank you.

with

a matrix product between a rotation U and a whitening W

Basic idea:

 \Rightarrow estimate only the last row of B, corresponding to r \Leftrightarrow estimate W and only the last row of U: u_M

- 1. Whitening W
- eigen factorization of the full rank measurement covariance matrix of x_c : $R_c = V \Sigma V^T$
- whitening matrix

$$\boldsymbol{W} = \boldsymbol{\Sigma}^{-1/2} \boldsymbol{V}^T \tag{3}$$

2. Rotation U

radu.ranta@ensem.inpl-nancy.fr p. 6

IB2010 Conference

Introduction

Scaling

Simulation

Mixed reference

Reference estimate

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation
- Depth EEG application

Mixed reference

$$\hat{r}^* = \boldsymbol{u}_M \boldsymbol{W} \boldsymbol{x}_c \tag{6}$$

$$\hat{r}^* = [-1\cdots - 1]\boldsymbol{R}_c^{-1}\boldsymbol{x}_c \tag{7}$$

Reference estimate

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation
- Depth EEG application

Mixed reference

Thank you.

$$\hat{r}^* = \boldsymbol{u}_M \boldsymbol{W} \boldsymbol{x}_c \tag{6}$$

$$\hat{r}^* = [-1\cdots - 1]\boldsymbol{R}_c^{-1}\boldsymbol{x}_c \tag{7}$$

Problem

- BSS implicit hypothesis \rightarrow unit standard deviation for \hat{r}^*
- scaling: find the best gain α such as

$$\min_{\alpha} \mathbb{E}[(\alpha \hat{r}^* - r)^2]$$

Scaling

For any measured signal $x_{c,i}$:

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation
- Depth EEG application

Mixed reference

$\mathbb{E}[(\alpha_{i}\hat{r}^{*} - r)^{2}] = \mathbb{E}[(x_{i} - r + \alpha_{i}\hat{r}^{*})^{2}] = \mathbb{E}[(x_{c,i} + \alpha_{i}\hat{r}^{*})^{2}] \\ = \mathbb{E}[x_{c,i}^{2}] + \alpha_{i}^{2}\mathbb{E}[\hat{r}^{*2}] + 2\alpha_{i}\mathbb{E}[x_{c,i}\hat{r}^{*}] \quad (8)$ (9)

Minimize with respect to α_i :

Thank you.

$\alpha_{i} = -\frac{\mathbb{E}[x_{c,i}\hat{r}^{*}]}{\mathbb{E}[\hat{r}^{*2}]}$ $= \left(-\frac{\mathbb{E}[(x_{i}-r)\hat{r}^{*}]}{\mathbb{E}[\hat{r}^{*2}]} = -\frac{\mathbb{E}[-r\hat{r}^{*}]}{\mathbb{E}[\hat{r}^{*2}]}\right)$ (10)

independent of i

Scaling

For any measured signal $x_{c,i}$:

Introduction

Independent reference

Proposed algorithm

Scaling

Simulation

• Depth EEG application

Mixed reference

$\mathbb{E}[(\alpha_{i}\hat{r}^{*} - r)^{2}] = \mathbb{E}[(x_{i} - r + \alpha_{i}\hat{r}^{*})^{2}] = \mathbb{E}[(x_{c,i} + \alpha_{i}\hat{r}^{*})^{2}] \\ = \mathbb{E}[x_{c,i}^{2}] + \alpha_{i}^{2}\mathbb{E}[\hat{r}^{*2}] + 2\alpha_{i}\mathbb{E}[x_{c,i}\hat{r}^{*}] \quad (8)$ (9)

Minimize with respect to α_i :

Thank you.

$\alpha_{i} = -\frac{\mathbb{E}[x_{c,i}\hat{r}^{*}]}{\mathbb{E}[\hat{r}^{*2}]}$ (10) $= \left(-\frac{\mathbb{E}[(x_{i}-r)\hat{r}^{*}]}{\mathbb{E}[\hat{r}^{*2}]} = -\frac{\mathbb{E}[-r\hat{r}^{*}]}{\mathbb{E}[\hat{r}^{*2}]}\right)$

independent of i

Scaling:

$$\alpha = -\frac{\mathbb{E}[x_{c,i}\hat{r}^*]}{\mathbb{E}[\hat{r}^{*2}]}, \qquad \hat{r} = \alpha \hat{r}^*$$
(11)

Simulation

radu.ranta@ensem.inpl-nancy.fr p. 9

IB2010 Conference

Possible application: coherence estimation

Coherence between signals 1 and 5 for the ideal zero-referenced mixture x (left), CR montage x_c (center) and corrected montage \hat{x} (right).

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation

• Depth EEG application

Mixed reference

Depth EEG application

Introduction

Independent reference

- Proposed algorithm
- Scaling
- Simulation
- Depth EEG application

Mixed reference

Thank you.

(e) Implantation

(f) original CR montage

radu.ranta@ensem.inpl-nancy.fr p. 11

IB2010 Conference

Coherence estimation

Coherence between channels OT_1 and OT_8 , before and after correction

T

Common reference montage

Noisy zero referenced potentials:

Introduction

$$\boldsymbol{x} = \boldsymbol{A}\boldsymbol{s} + \boldsymbol{n} \tag{12}$$

Independent reference

Mixed reference

Montages

Problems

• Conclusion and future research

Thank you.

where n are independent gaussian noises Head common reference realistic setup:

$$\boldsymbol{x}_{CRM} = \boldsymbol{T}_{CRM} \cdot \boldsymbol{x} \tag{13}$$

where T_{CRM} $(M - 1 \times M)$ is given by:

$$\boldsymbol{T}_{CRM} = \begin{bmatrix} 1 & 0 & \dots & 0 & -1 \\ 0 & 1 & \dots & 0 & -1 \\ \vdots & \vdots & \dots & \vdots & -1 \\ 0 & 0 & \dots & 1 & -1 \end{bmatrix}$$

Assume N = M - 1 sources (*i.e.*, enough measures).

Montages

Introduction

Independent reference

Mixed reference

Montages

Problems

 Conclusion and future research

Thank you.

 $\boldsymbol{T}_{ABLM} = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & -1 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}$

• average (augmented): $x_{AARM} = T_{AARM} \cdot x_{CRM}$

$$\boldsymbol{T}_{AARM} = \begin{bmatrix} 1 - \frac{1}{M-1} & -\frac{1}{M-1} & \dots & -\frac{1}{M-1} \\ -\frac{1}{M-1} & 1 - \frac{1}{M-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -\frac{1}{M-1} \\ -\frac{1}{M-1} & \dots & -\frac{1}{M-1} & 1 - \frac{1}{M-1} \\ -\frac{1}{M-1} & -\frac{1}{M-1} & -\frac{1}{M-1} & -\frac{1}{M-1} \end{bmatrix}$$
(15)

radu.ranta@ensem.inpl-nancy.fr p. 15

(14)

IB2010 Conference

Problems

Introduction

Independent reference

Mixed reference

Montages

Problems

• Conclusion and future research

Thank you.

• are the source separation solutions equivalent ?

No. The noise affecting the montages is not equivalent ! AARM gives the best solution (separability index, correlation with the original sources, correlation with the ECG in real recordings).

Problems

Introduction

Independent reference

Mixed reference

- Montages
- Problems
- Conclusion and future research

Thank you.

• are the source separation solutions equivalent ?

No. The noise affecting the montages is not equivalent ! AARM gives the best solution (separability index, correlation with the original sources, correlation with the ECG in real recordings).

which is the best approximation of the zero referenced montage?

$$T_{AARM} = T^+_{CRM}$$

The AARM (augmented average reference montage) is the closest solution (MSE) to the reference problem !

Conclusion and future research

	Introc	luction
_		

Independent reference

Mixed reference

- Montages
- Problems
- Conclusion and future research

Thank you.

Independent reference

- validate the method on several depth EEG recordings
- extra-cranial reference for surface EEG ?
- connectivity estimation
- evoked potentials (intra-cranial, surface)

Conclusion and future research

Introduction

Independent reference

Mixed reference

- Montages
- Problems
- Conclusion and future research

Thank you.

Independent reference

- validate the method on several depth EEG recordings
- extra-cranial reference for surface EEG ?
- connectivity estimation
- evoked potentials (intra-cranial, surface)

Mixed reference

• use the augmented average montage

References:

- independent reference : IEEE EMBC'10 (Buenos Aires)
- mixed reference : Biomedical Signal Processing & Control (Elsevier) minor revision

http://perso.ensem.inpl-nancy.fr/Radu.Ranta/publications.html

T