#### Click this field to add text

# Automatic artifact reduction in fMRI using ICA and global decision

#### trees

Jussi Tohka Department of Signal Processing Tampere University of Technology Finland





#### NeuroImage

www.elsevier.com/locate/ynimg NeuroImage 39 (2008) 1227-1245

# Automatic independent component labeling for artifact removal in fMRI

Jussi Tohka,<sup>a,\*</sup> Karin Foerde,<sup>b</sup> Adam R. Aron,<sup>f</sup> Sabrina M. Tom,<sup>b</sup> Arthur W. Toga,<sup>e</sup> and Russell A. Poldrack<sup>b,c,d</sup>

<sup>a</sup>Institute of Signal Processing, Tampere University of Technology, Tampere, Finland

- <sup>b</sup>Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- <sup>c</sup>Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- <sup>d</sup>Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
- <sup>e</sup>Laboratory of Neuro Imaging, Department of Neurology, University of California Los Angeles Medical School, Los Angeles, CA, USA

<sup>f</sup>Department of Psychology, University of California, San Diego, CA, USA

TAMPERE UNIVERSITY OF TECHNOLOGY Institute of signal processing

## Outline

- Structured noise in fMRI
- Component analysis based structured noise/artifact reduction
- Automatic artifactual component identification
- Effects to group level GLM/GRF based analysis



## Structured noise in BOLD fMRI

#### Various types of noise in BOLD fMRI

- Gross head motion. Induces also spin history artifacts (Friston MRM 96) and motion by susceptibility interactions (Wu MRI 97)
- Even after motion correction some motion artifacts remain, both due to inability of motion correction algorithms to correct within scan or nonlinear motion effects and interpolation artifacts (Groontoonk NI 00)
- Eye and jar movement related artifacts (Beauchamp MRM 03)
- Physiological noise due to respiration, heart beat, blood flow, etc. (Kruger and Glover MRM 01). Often aliased due to slow TR and aliased noise not restricted to a certain frequency band (Lund NI 07)
- **Important:** Noise/artifacts have complex spatial, temporal, and frequency domain patterns.



## Structured noise and GLM

#### The basic GLM:



We need: 1) the estimate of the parameter vector (OLS) AND 2) the estimate of noise covariance

The structured noise effects both



#### **Noise reduction**

- Filtering (spatial, temporal), movement correction, various specialized techniques
- If one knows (or can estimate) the noise/artifact time course, one can add a regressor into design matrix or subtract the artifact time-course from the data
  - RETROKCOR (Hu 95)
  - RETROICOR (Glover MRM 00)
  - Friston MRM 1996
  - Lund NI 2007
- Usually external measurements are needed (E.G. photoplethysmograph and pneumatic belt in RETROICOR)



#### **Noise reduction**

- Noise reduction based on component analyses
  - The focus of this presentation The 'algorithm':
  - 1. Decompose the timeseries into linear latent variables models
  - 2. Detect the those variables/components that are clearly artifact related
  - 3. Re-Reconstruct the timeseries without clearly artifact related components
- Can be purely image-based
- Can be used in conjunction of GLM or without GLM



## Independent Component Analysis in fMRI

 Divide the 4-D timeseries into components consisting of 1-D time series and a 3-D component map so that random variables representing component maps are maximally independent





## ICA based denoising

#### Some components are clearly artifact/noise related





# ICA based denoising

- **y**<sub>i</sub> is the ith voxel time series
- C is the matrix of spatial component maps; c<sub>ij</sub> is the value corresponding voxel i and jth component
- **t**<sub>i</sub> is the jth component time course, T is the mixing matrix

$$\mathbf{y}_{i} = \sum_{\text{non-artifacts}} \mathbf{c}_{ij}\mathbf{t}_{j} + \sum_{\text{artifacts}} \mathbf{c}_{ij}\mathbf{t}_{j} + \mathbf{e}_{ij}$$

$$\mathbf{y}_{i}^{\text{denoised}} = \sum_{\text{non-artifacts}} \mathbf{c}_{ij}\mathbf{t}_{j} + \mathbf{e} = \mathbf{y}_{i} - \sum_{\text{artifacts}} \mathbf{c}_{ij}\mathbf{t}_{j}$$

• In practise:  $\mathbf{y}_i^{\text{denoised}} = (\mathbf{I} - \mathbf{T}\mathbf{P}\mathbf{T}^+) \mathbf{y}_i$ ,

where P is the artifact selection matrix and T<sup>+</sup> is the Moore-Penrose pseudoinverse of T (FSL's regfilt)

#### Demonstration

#### Simulations

Resting state data from FBIRN traveling subjects database; A simulated activation pattern overlaid to the resting state data and finally added some simulated motion artifacts (interleaved acquisition)



1 - specificity





Note: the estimated number of ICA components dropped from 44 to 7 when the simulated motion was added (4 of those 7 could be attributed to motion)

-> bad artifacts mix up melodic's component number estimation approach, and probably others as well



#### Some components are borderline components

#### Component time course #2 (artifact)



Component time course #42 (not artifact)



#### Component selection: Other works

- It is possible to manually pick the components that are clearly artifact related (e.g. Foerde PNAS06, FEAT user guide)
  - Time consuming
  - Subjective
- Automatic approaches:
  - McKeown NI 2000: Hybrid component analysis (adding regressors to GLM)
  - Thomas NI 2002: Short TR cardiac noise and respiration noise removal (visual checkerboard stimulus)
  - Kochiyama NI2005: Task related motion removal (motor task)
  - Perlbarg MRI 2007: Global and respiration related movements and local cardiac fluctuations (motor task)
  - Beall NI 2007: RETROICOR + ICA (resting-state)
  - Sui NI 2009



#### ICA based denoising: Our approach

- Perform ICA on motion corrected and filtered data
- Train a supervised classifier based on manually classified
   exemplars to detect obvious artifact/noise related component
- Thereafter, the classification can be performed automatically
- Our aim was in improving the accuracy and reliability of GLMbased group level analyses.
- However, the method applies no knowledge of the behavioral paradigm -> could be useful in resting state



#### Supervised classification





#### ICA based denoising: Noise classes





#### Manual classification procedure





#### **Pattern Classification Systems**



Image from Duda, Hart, Stork: Pattern Classification, 2nd edition



#### **Classifier training**

- For each component, compute six features characterising the admissibility of the component
- 2 features based on PSD of the component time course, 2 features based on component time course itself, 2 features based on component map
- Train a Global decision tree classifier based on manually classified examples
  - Simple decision regions, good generalization rate, imitates manual procedure
- Training is done in Neyman Pearson setting
  - Implications: False alarm rate can be controlled, Divide and conquer/exhaustive search algorithm is ok.



#### **Features**

$$f_{1} = \frac{\sum_{\omega_{j} \in \Omega_{\text{target}}} p[\omega_{j}]}{\sum_{\omega_{j} \in \Omega_{\text{target}}} p[\omega_{j}] + \sum_{\omega_{j} \in \Omega_{\text{target}}} p[\omega_{j}]}, \qquad f_{4} = -\frac{\left|\sum_{i} \text{Var}[c^{2i-1}] - \sum_{i} \text{Var}[c^{2i}]\right|}{\sum_{i} \text{Var}[c^{i}]}$$

$$f_{2} = \frac{\sum_{\omega_{j} \in \Omega_{\text{target}}} p[\omega_{j}]}{\sum_{\omega_{j} \in \Omega} p[\omega_{j}]}, \qquad f_{5} = -\frac{\max_{j} |t[j] - t[j-1]|}{\sum_{j=2}^{T} |t[j] - t[j-1]|}$$

$$f_{3} = \frac{\text{Var}\{c[i] : i \in B\} - \text{Var}\{c[i] : i \in \partial B\}}{\text{Var}\{c[i] : i \in B\}}, \qquad f_{6} = \frac{T\sum_{j=2}^{T} t^{*}[j]t^{*}[j-1]}{(T-1)\sum_{j=1}^{T} t^{*}[j]t^{*}[j]}.$$



#### ICA based denoising: Classifier



 $J(\mathbf{f}) = J_1(\mathbf{f}|\theta_1) \vee J_2(\mathbf{f}|\theta_2) \vee J_3(\mathbf{f}|\theta_3) \vee J_4(\mathbf{f}|\theta_4),$ 

| $J_1({\bf f} \theta_1) = (f_2 < \theta_{12}) \land (f_4 < \theta_{14}) \land (f_6 < \theta_{16})$              |
|----------------------------------------------------------------------------------------------------------------|
| $J_2(\mathbf{f} \theta_2) = (f_1 < \theta_{21}) \land ((f_4 < \theta_{24}) \lor (f_3 < \theta_{23}))$          |
| $J_{3}(\mathbf{f} \theta_{3}) = (f_{2} < \theta_{32}) \land (f_{4} < \theta_{34}) \land (f_{6} < \theta_{36})$ |
| $J_4(\mathbf{f} \theta_4) = (f_4 < \theta_{42}) \land (f_4 < \theta_{44}) \land (f_5 < \theta_{45})$           |



#### **Experiments: Material**

- Data from category learning tasks, both block design and event related design
  - 3T Siemens Allegra head only scanner, interleaved acquisition, gradient each echo planar pulse sequence (TR 2000 ms, TE 30ms, 64 x 64 x 25/30 image size, 3mm x 3mm x 4mm voxel size)
- Training Set
  - Used for classifier training, 20 subjects, 4 blocked design and 2 event related design runs per subject, total 5321 ICA components hand classified to generate training data
- Test Set
  - NOT used for classifier training. 12 subjects. 5 blocked design and 1 event related design probe run per subject. ICA components hand-classified for evaluation purposes
- Simulations
  - Resting state data from FBIRN traveling subjects database; A simulated activation pattern overlaid to the resting state data and finally added some simulated motion artifacts (interleaved acquisition)



# Results: training vs. test errors (event related design)





#### Training set size with test data (blocked design)



TAMPERE UNIVERSITY OF TECHNOLOGY Institute of signal processing

#### NP threshold with test data (blocked design)



TAMPERE UNIVERSITY OF TECHNOLOGY Institute of signal processing

#### Effects to group level analyses





# Effects to group level analyses (test data, blocked design)



Hot colors: Group level Z score increased more than 0.33 Cold colors: Group level Z score decreased more than 0.33



#### Effects to group level analyses



- Greater dual task activity than single task activity in the group analysis (P = 0.05, corrected for whole brain using GRF theory)
- Yellow: The voxel activated for original and denoised datasets
- Blue: The voxel is activated only for denoised dataset
- Red: The voxel is activated only for original dataset



## Results: Number of Components: ER design

| • NP                                     | 0.05 | 0.1  | 0.15 | 0.2   |
|------------------------------------------|------|------|------|-------|
| <ul> <li>Mean M</li> </ul>               | 51.3 | 51.3 | 51.3 | 51.3  |
| <ul> <li>Mean R</li> </ul>               | 4.58 | 9.83 | 12.3 | 14.42 |
| <ul> <li>Mean Mdn</li> </ul>             | 47.1 | 42.8 | 40.5 | 38.7  |
| <ul> <li>Mean  Mdn – (M - R) </li> </ul> | 0.67 | 1.50 | 1.50 | 1.75  |

- NP ~ NP threshold
- M ~ Number of estimated components
- R ~ Number of rejected components
- Mdn ~ Number of estimated components from denoised data



#### Conclusions

- A method for automatic identification of artifact/structured noise related independent components has been described
- The method was based on supervised classification using Global Neyman Pearson decision trees
  - We have tested also other classification schemes. Good generalization rates were hard to achieve. However, this data is preliminary.
- The Matlab-code & classifiers can be obtained from http://www.cs.tut.fi/~jupeto/software.html



# Thank you!

