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1 Introduction

1.1 Background

In recent years, interest to Peer-To-Peer (P2P) technologyinbesased noticeably,
especially due to P2P file sharing systems such as Kazzadk eDonkey [eDonkey],
Gnutella [Gnutella] etc. However, P2P is not only about file sbariinis also about
establishing multimedia communication networks based on P2P concepg¢sooirce
sharing [Schollmeier 2001]. Nowadays there are many applicatiosgstdms that use
P2P paradigm, for instance, such as collaboration systems [Groomgjutation systems
[SETI@Home] and infrastructure systems [Edutella]. Also P2®erys will be able to be
used for interaction between ubiquitous devices. P2P systems adedmatize dynamic
and distributed architecture, which allows guaranteeing robustnesahikiya efficient

use of available resources, adaptation and self-organization.

P2P can be defined as system consisting of peer processesthat aa server and client
at the same time. In pure P2P system there is no cendrgdaat. A peer can initiate
requests, and it can respond to requests from other peers in theknéfsers have a

higher degree of autonomy and control over the services they utilize.

Now let us turn clock back and look through history of appearance otd?Beer. Some
people think that P2P paradigm is something new, but it is not erdwelgarly Internet
was organized in such a way that all hosts were equals. Anthéldesome characteristics,
which can characterize any distributed system such as P2 histcwas able to perform
routing (locate machines), accept FTP connections (file sharind) amcept telnet
connections (distributed computation) [Oram 2001]. After that, when nekdsers
increased and at the same time power of computers still wasonloig, Client-Server
architecture spread in the Internet and Peer-to-Peer tempoaased from the scene,
awaiting its chance to appear again in a new role. That chaasegiwen to P2P with
appearance of Napster, when power of modern computers increasedistg Bigh
requirements of users. Although several years ago an activitppstél was stopped (of

course now Napster still exists, but people have to pay for the ynoscause of copyright



problems, appearance of Napster was initial point to resurrdcintesest to problems,

which are related to P2P networking.

1.2 Research Problem Statement

It is difficult task to provide efficient methods to handle P2P nétingr because of
absence of an infrastructure in pure P2P models. But in particutsr kiveds of networks
are of interests in most researches. One of the most imptas&stthat should be solved is
organization of an efficient search in P2P networks. Nowadaysoh te¢thods have been
proposed in this area. But none of them uses neural network solutions éxeept

NeuroSearch algorithm [Vapa et al. 2004] developed in the Agora Center.

1.3 Contribution of the Thesis

Since in the Thesis, a lot of methods from different scientificadosnare used. Therefore
it might be difficult to understand how different parts of the These related to each
other. In this section brief introduction to the problems, which | want to solve on the Thesis

IS given.

The contribution of the Thesis may be seen from two differentipositFirst it aims to
solve problems related to adaptation of decision mechanism of NetrbSeadynamic
environment. Second the Thesis investigates NeuroSearch trained wjh ohe
Evolutionary Computing to look inside of decision mechanism. Having solvedtwe a
described problems we will be able to provide efficient solutian djtimization of
NeuroSearch in dynamic environment. It is because results obtaimedimulation under
dynamic conditions of NeuroSearch that was trained in static env@r@ncan answer in
general about the feasibility of using such algorithm in dynamic envinstnimeestigation
of NeuroSearch that was trained with the help of Evolutionary Compigidgne with
help of Self-Organizing Maps (SOM) [Kohonen 2001]. This investigationesded to
know more about the inner processes in NeuroSearch. Therefore thigyatie@sican help

answering existing questions about NeuroSearch such as which inputsealed, which



inputs are responsible for particular decision and so on. This carohedp tmore efficient

training strategies in future works.

1.4 Cheese Factory Project

The thesis was made within Cheese Factory project [Cheese]) i8tgoing in University
of Jyvaskyla at Agora Center. The project studies P2P commionicatd behaviour of
P2P networks concentrating on distributed search of resources andfticent use. In
the project Chedar P2P platform has been developed. Chedar is usestribsiteti
computing and storage system for distributed applications. To $teldgviour of P2P
network P2PStudio emulator environment has been developed as well.tlRE® &N
control the whole Chedar servent network using graphical useraicéerOne of the
researching goals of Chedar and P2PStudio is realtime resocatien. Currently Chedar
uses three searching algorithms: adaptive flooded search, linkg/safiection and

NeuroSearch. My research is entirely dedicated to NeuroSearch algorithm

1.5 Structure of the Thesis

This work is dedicated to resource discovery problem, which is oriee ghain problems
in P2P networking. The thesis consists of eight chapters. Chaptbentno reviews P2P
architectures, their properties and existing search sieatag P2P systems. Chapter
number three introduces the used neural network architectures (Mwéti Rayceptron and
Self Organizing Maps) and some methods for preliminary detetionaf neural network
architectures. Also this chapter describes Matlab environmengirffaulation of neural
networks. Chapter number four is entirely dedicated to NeuroSearchabateveloped in
the Agora Center as part of Cheese Factory project [Chaeda}volutionary computing.
In chapter number five we introduce data analyzing techniques andtappiyto know
more about behaviour and decisions making mechanism of NeuroSearch. Irr chapte
number six we consider aspects of P2P simulation, available smnuksoftware and
stages of development of P2P simulation for NS-2 [NS-2]. Chaptaber seven presents
evaluation of results obtained from simulation of Rule Based #lgor{RBA) and their

comparison with results of Breadth-First Search algorithmsmamyc environment. RBA



is entirely based on NeuroSearch. It was produced by convertirgjasheanechanism of
NeuroSearch to set of rules using SOM. Also chapter number seesanf® some
optimization problems that are related to provision of efficiennitrg in supervised

manner. The thesis is concluded in chapter number eight.



2 Peer-to-Peer systems

This chapter reviews existing P2P systems, their charactepi®perties and presented

solutions in these systems for resource discovery problem.

2.1 Definition of Resource Discovery Problem

Resource discovery problem is illustrated in figure 2.1.

4,2

Figure 2.1 — Resource discovery problem

In figure 2.1 one can see that the network can be representedaghakgch node in the
graph contains different amount of resources. Thus resource diggrebiem comes to
finding optimal searching strategies on the graph. In contrasiual searching methods
on the graphs (where we should find the shortest path between semeodss), in
resource discovery problem we should apply good search strategy, udashefficient

spread of the queries through the network to find satisfied amount of resources.



2.2 Peer-to-Peer Architectures

If we consider P2P networks in terms of traditional OSI model ¥ can notice that P2P
interaction belongs to application layer. Development of such networkes to building
of logical interaction between peers. For example, in well-knownriéBRork as Gnutella
neighboring peers might not be connected physically and some peee tacated in USA

and its neighbor somewhere in Brazil.
Mainly P2P systems are subdivided into two models:

* Pure (Decentralized) P2P model
* Hybrid (Centralized) P2P model

Classical example of hybrid P2P model is Napster.
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Figure 2.2 — Hybrid P2P architecture

The hybrid model has one central server to maintain transatteingen all peers in the
network. The server contains list of resources that each uséWhas user needs to find

some resource, he sends query to the central server and serverbaekd® user



information that matched his query. Figure 2.2 shows interactiorebatpeers and server
in the hybrid P2P model.

The pure P2P models such as Gnutella are characterized byealuseany centralized
points. Each peer in such system is autonomous and can act both asuséras client.
Thus pure P2P model completely satisfies this P2P definition. FigBirghows interaction

between users in the pure P2P environment.

Download

A || e (| C (| —ee— D

)
H]V

| need z.m | have it.

N\

=

Figure 2.3 — Pure P2P architecture

Decentralized architecture is subdivided into structured and unsticsystems. The
main difference between these two systems is that in stegctsystems we know
beforehand location of resources or some hints how to find resourcasstimctured

systems resources are distributed randomly.

Organizing of an effective searching mechanism in the hyl@RiRodels is easier than in
the pure P2P models. But the hybrid model has smaller reliainlitpntrast to the pure
model because it has central server and if something happénthevcentral server then it

will influence on the performance of the whole system. Efficreaintaining of the pure



P2P system is complex task, because of lack of an infrasgu&wviding solutions to
maintain this system is a challengeable and at the sarseatinecessary task. Thus our

research is dedicated to the pure P2P systems.

2.3 Small World and Power-law Networks

Recent studies [lamnitchi et al. 2002] showed that P2P systevascharacteristics of

small world networks. Small world networks have two major characteristic piesper

» Small average path length — even if size of the networ&rge] there is a short
path between any two nodes.
» Large clustering coefficient — the networks have relativiely connectivity

between at least some nodes.

There are a lot of examples of such networks. For instand&@ne Wide Web [Albert &

Barabasi 2001], where the nodes are web pages and the eddes laypetrlinks. Another
example of small world networks is the Internet [Albert &dmsi 2001], where the
nodes represent routers or computers and the edges are reprdsentednections

between them.

In the small world networks, typical distance between any two nsedakes as the
logarithm of the number of nodes. Clustering coefficient of the one made be

determined using the formula (1).

2E,

© Tk -1 W

Wherek; is the number of edges of particular nodeat would connect it g other nodes

in case of full connected graplk, is the number of edges that actually exist betwee

them. To determine clustering coefficient of whaktwork we need to calculate average

value of allC, .



Naturally, all nodes in the network do not have Hane number of links. A lot of
networks including WWW [Albert & Barabasi 2001]témnet [Faloutsos et al. 1999], P2P
[Ripeanu 2002] have power-law distribution of nddkgreek (2).

P(k) ~ k™ @)

Where y is parameter that depends on the type of the mkjwdhese three key properties
(shortest path length, clustering coefficient amdver-law dependency) of P2P systems
play significant role in studying and modellingsafch systems. For instance, if we decided
to generate P2P scenario based only on power-latsildition we could get some case
when we have ‘chain’ of nodes that are connectegimman only with two neighbors
increasing the average path length parameter. iTlsisery important to take into account

all of these three parameters.
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Figure 2.4 - Power-law graph with small clusteraugfficient and large average path length

Figure 2.4 shows power law graph where we havenctiam the node five to the node

nine, this chain decreases clustering coefficiadtiacreases average path length.



2.4 Peer-to-Peer Search Algorithms

Search in nondeterministic environment such as &2Rronment is very complex task
because we do not know exact location of resouacestopology is always changing.
Thus even using of very efficient deterministicrsbastrategies like A* algorithm [Russell

& Norvig 1995] is not possible.

Nowadays a lot of methods were proposed for seagcim P2P networks. Most common
search strategy is to use the Breadth First Se@é&ts) algorithm, which was first
introduced and tested in Gnutella network. Thimatgm uses simple flooding mechanism
to locate resources in the network. When user neetiad some resource in the network
he just sends query to all neighboring nodes, whicpagate this query to their neighbors
except the node from which query was received anans If the query has been received
earlier it is dropped. When query finds neededuasoat some node, this node sends back
reply to notify about this. Each query contains &iifo-Live (TTL) field that defines
limitation on travelling path. BFS algorithm is fpooof method to locate all resources in

the network, but we should pay high price for thiscause the algorithm is not scalable.

To decrease flooding a lot of techniques were megolt has been shown [Lv et al. 2002]
[Adamic et al. 2002] [Ata et al. 2003] that forwarg queries to only some neighbors can
significantly decrease flooding of messages in rikewvork and at the same time keep
satisfactory level of located resources. One meth@dncluded in forwarding messages to
a randomly chosen neighbor or to a randomly chgseuap of neighbors (Random Walk).

Another approach is concluded in selecting of tighdst degree node (High Degree
Search) or the lowest degree node (Low Degree Betocfurther forwarding. All these

methods act in depth-first search manner and thus large latency.

Depth-first search algorithm with a limited depibesis used in Freenet [Freenet] network.
Each node forwards the query only to one neighlnor &fter that waits for reply. If the

query was satisfied it sends results to initiatobthe query and if it was not it sends the
query to another neighbor. Major disadvantages isfdahproach is that we should define
not only depth limit, but also waiting time for sf&ction, which can vary for peers with

different network connection.
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Yang and Garcia-Molina [Yang & Garcia-Molina 2002pposed three different strategies
for searching in P2P environment. Their experimevdse made with real Gnutella client.
First method, which is called Iterative deepenimdpased on BFS algorithm. It uses some
parameters, which should be determined in advdfcs, it needs system-wide policy that
determines depth levels of iterations, in otherdsothis policy is just predefined set of
TTL values for each iteration. If the query was matisfied with first element from
system-wide policy it resends the query with secsledthent and so on. Also here needs be
defined a waiting time of satisfaction. This par#nés similar to parameter, which is used
in Freenet network. Second method, Directed BFSvdois queries to subset of
neighboring nodes, which are selected with helgifierent heuristics that are stored
locally on each node. These heuristics include rarndd replies returned for recent
queries, the lowest average path for satisfyingiptes queries, number of sent messages
and the shortest message queue. Third algorithrmallindices is some kind of Iterative
deepening. The difference between them lays ircpoRolicy in Local indices specifies

nodes at which the query should be processed.

2.5 Discussion

Methods that were mentioned in section 2.4 have sadwantages and disadvantages.
Using of one concrete method should be selectesbngag from starting requirements of
each task. If it is more important only to find atistances of resources and paying
attention to other criteria is not so importantrntivee should use simple algorithms like
BFS. If number of packets is crucial part of taskd docating only part of resources’
instances satisfies us then we should use moriigetée methods. P2P networks usually
are characterized as large size networks with swalld properties thus using simple

flooding techniques is not good solution for suelbworks.

Some from above mentioned algorithms require piehny determining of some
parameters, especially this is related to methbdswere proposed by Yang and Garcia-
Molina. Determining of such parameters can be diffitask, because P2P is unstable
system and thus these parameters can vary forrafitfenetworks and for different

network’s behaviour.

11



Nowadays degree based forwarding methods are gftfi®@ent strategies for resource
discovery problem in P2P network. It was shown [éttal. 2003] that High Degree Search
can decrease the search delay compared to the Randdk, and Low Degree Search can

improve robustness against peer failure.

Using of Random Walk method is also quite efficistnategy, but it is difficult to evaluate

performance of this algorithm because of randorareatf this algorithm.

12



3 Neural Networks

Artificial neural networks (NN) have quite a lotnslar characteristics with biological
neural structures. They consist of elemental comguunits (neurons), which are
organized as complex structure with help of spemainectors called synapses. NN can be
applied to the areas where traditional methodsatomork well or do not work at all. For
instance, NNs are often used in such task as pateognition, approximation of

functions, compression of images, forecasting aadynothers.

This chapter describes basic principles of NN camgu Without knowing ‘sources’ it is

not possible to understand the problem completelpther words this helps to understand
why one concrete method or NN architecture can dlecged and others not to solve
particular problem. Information that is given insttchapter can be also used in future

works to provide supervised training for resouriseavery problem.

3.1 Multi Layer Perceptron

X1

f @ f

X2 f Z f

| i : | ouT
| : : | > =
Output

i | i E layer

Xn f @ f

Input 1st hidden 2nd hidden

layer layer layer

Figure 3.1 — Multi Layer Perceptron
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Full-connected Multi Layer Perceptron (MLP) is shoimnfigure 3.1. Another name for
MLP is feed-forward network. In the figure one caotice that circles are denoted as
neurons, squares are denoted as their activatimetifns and lines are denoted synapses
and axons. Axons go out from neuron and synapsestgaeuron. Each synapse has its
weight and function of each neuron is similar tdioary weighted summator. Each neuron
has its activation function. There are a lot ofddrof activation functions. The one of the

first introduced activation functions was threshatdivation functions (3).

Foo:{l x>0 ©

0, otherwise

Nowadays most used functions are sigmoid (4) apetplic tangent (5).

_ 1
FO = @
Fo9="% ©
e +e

Activation functions can be viewed as amplification artificial neuron. Activation
functions like sigmoid and hyperbolic tangent calves problem with noise satiation. The
main point in this problem is how NN can processkvand strength signals at the same
time. Weak signal needs high amplification anchatgame time using strength signal with
high amplification can lead to satiation of NN. @ther purpose of activation function is to
scale output of each neuron between 0 and 1. Applgi activation functions has one

general requirement: these functions must have fingti derivative in all points.

Usually MLP contains one input layer, several hiddi@yers and one output layer. The
purpose of input layer is to forward signal toredlurons on the hidden layer. After that all
neurons on hidden layer calculate their outputs fandard them further. Single neuron
can solve only line-separable task, for examptarnot solve XOR problem. Illustration

of XOR problem is shown in figure 3.2.

14



0 1

0 1

Figure 3.2 — XOR problem

In the figure 3.2 one can see it is impossible ¢e gingle line to separate clearly two

clusters (ones and zeros). But two neurons unité¢N will be able to solve such task.

3.1.1 Trainingof theMLP

There are a lot of strategies to train NN. Nowadagily two approaches are used:

e Supervised Learning

* Unsupervised Learning

One of the first introduced approaches was Heblgthod. This unsupervised method was
introduced in 1949 [Hebb 1949] and the idea isftflewing: increasing of weight of each
synapse is made according to correlation betweam neurons, which this synapse

connects. Mathematical interpretation of this releefined by formula (6).

w, (t+1) = w, (t) + NETNET, )(6

In formula (6) w; (t) and w; (t +1) denote weights of synapse between two neurons in
time t andt+1 respectively,NET, and NET, denote outputs of the first and the second

neurons respectively. Further investigation [McEieset al. 1987] of the Hebb’s rule

showed limitation of using this method with somé&eas.

After introduction of Hebb’s method, a lot of suypised methods were proposed, but all
these methods were without straight theoreticakdparind. Introducing the most powerful

method called Error Back Propagation (BP) [Bish8p3] played significant role in neural

15



computing. BP has excellent mathematical backgro@&® algorithm has the following

steps:

1.

The outputs of all neurons in the hidden and outpyérs are calculated using

formula (7).
OUT, =F(Xwx ) ()

Where F is sigmoid activation functiom; is weight of synapse that connedts

neuron from previous layer tth neuron at next layery; is the output signal from

ith neuron.

Error of MLP is calculated using formula (8).

E = (0UT() - G()* ) (8
OUT(x)andG(x) are current and desired outputs respectively.
Updating of weights is defined by formula (9).

w(t+D) =w () -0 2= )(©
ow,

j

On this step all calculations are made fer ldst (output) layer thug is index of

neuron from the output layer andis index of neuron from the previous hidden

layer.

The error function does not contain a dependenceveight w; thus implicit

derivation of composite function are used:

oE _ . _ :
00T - ; = (0OUT(x) -G(x)) (10)

16



aE: 0E 00UT
ox. o00UT dxj

J

= 3,0UT(L-OUT) (11)

0E _ OE 9OUT 0X
ow; 00OUT 0x; ow,

1

= 3,0UT(L- OUT)OUT, (12)

3. On this step all calculations are made for the émddayers. Calculations of
derivations are made with the same formulas asejp 2, but formulas for finding

o0, are changed a little.

oE _5 = 0E 0X;

———=4,=y ——1—=% 50UT(1-0UT)w, 13
oout ox, 0OUT 2.0,0UT( M 49

9E _ OE OUT 9,
= =() 0 0UTA-0OUT)w, )(OUT(@L-OUT)x 14
ow, 30UT ax ow, ~ (Z00UTA-OUDW)OUTA-OUTIX) (14

[

To calculated; error back propagation method was used. Partralateves can be

found using only variables from the next layer. Y$ of hidden layer are changed
using the above presented formulas. If NN has sév@dden layers then BP
method is used in series for each hidden layetirsgigirom the last hidden layer.

4. If converging conditions (usually it is small traig error) is not met then return to

step number one.

One can see from steps number two and three thiatng process is merely solving of
error optimization task using gradient method. Theaning of BP method consists of
using weighted sum of errors from next layer to ghevious layer. Parameter from (9)

is used to define speed of learning process. Usuhls parameter is quite small to
guarantee convergence of the method. To deterrhisgpirameter compromise between

speed and good convergence should be found.

After introduction of original BP method, a lot ohodifications were introduced.

Originally BP was used with random selection of os@&mple on each iteration.

17



Convergence time of this version of BP method wasy\slow. To decrease time of
convergence batch method [Bishop 1995] was intredudhis method instead of one
random sample uses whole training dataset on echtion. Weight's updating is

performed by using average value of error for thele dataset.

Other approaches use adjustment of the speed paramdf training is slow then the
speed parameter should be increased. If trainitgpisast then the speed parameter should
be decreased. There are both local and global miethiar adaptation of the speed
parameter. The difference between them is thatidbad) methods all weights have one

common speed parameter and in local methods eaghti®s its own speed parameter.

The most interesting method is Rprop [Bishop 1985this method value of derivative is
not important. This method takes into account @y of derivative. Convergence of this
method is very fast. There are also a lot of methtbdt use high derivatives, for example

such as Levemberg-Marquadt method [Bishop 1995].

3.1.2 TheOverlearning Problem

After completing training process it is possiblatttiNN merely learnt all samples from
training dataset and at the same time it has possipilities to predict behavior of the
system in the intermediate points. Classical exaropkhe overlearning problem is shown

in figure 3.3.

To avoid overlearning a lot of methods have beerpg@sed. The simplest solution is
interrupting the training process. But using ofstmethod is dangerous because we can
interrupt training in the point where NN did notoh quite good optimal point. Instead of
this we could use test dataset together with tngirdataset. Interrupting of the process
should be done in the point where difference betwereor on training and test datasets is
minimal and at the same time error on training skttés quite small. Figure 3.4 illustrates
use of this method. One can see point A thatii® @ood moment to interrupt training.
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Figure 3.3 — The Overlearning problem
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Figure 3.4 — Using of test dataset

Another good approach is to use penalty terms. Welgcay [Bishop 1995] is well known

example of such methods. The penalty term in weiglchly penalizes large weights. It is
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quite easy to apply such method by adding new comto(- 2Aw; ) in the weight update

rule. The parameted is used to define strength of penalization. Recesgarches [Krogh
& Hertz 1995] show that weight decay can signifittarmprove generalization abilities of
NN.

3.1.3 Projection of theMLP

Creation of MLP is quite complex task. A lot of expnents should be done before
selecting the structure of NN. Despite on this s@mediminary steps can be taken to help

decrease time to find the correct structure of NN.

Main question that should be answered is how maygrsaare needed and how many
neurons should be used in each layer. A comprob@sgeen accuracy and generalization
ability of NN must be made. Number of neurons stidad enough to solve the task, but on

the other hand it should not be too big to guamgteod generalization ability.

First decision, which should be made, is what kafdstructure of NN (constricted or

dilative) will be applied. The constricted NN hasne neurons in the hidden layer than in
the output layer. The dilative NN has more neurionghe input layer than in the hidden
layer. The constricted NN is used to extract soeaures from the data set. The dilative

NN well separates similar input vectors, but itagmlization abilities are not high.

To find upper limit of number of neurons on hiddeger Kolmogorov theorem can be
used [Hecht-Nielsen 1987]. According to this theo@ny function witm variables can be
approximated as superpositi@n+1 one dimensional functions. The upper limitan be

found using formula (15). Parameters number of input elements.
h<2i+1 (15)

In other words there is no sense to use more hidignents than doubled number of input
elements. But this approach cannot be easily ahptiecause it requires proper selection

of activation function (which is hand task).
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[Eryurek & Upadhyaya 1990] used formula (16) todfiabsolute maximum of number of

weightsw.
w=ilog, p+i (16)

In formula (16) parameter is size of input vector and paramepeis number of vectors.
For tasks that require good generalization, paranvetshould be significantly less than
that obtained from formula (16). Widrow and Lehrifidw & Lehr 1990] showed more
accurate evaluation of number of weights for twgetanetwork:

M—KlsCd sz—jlogz%+K2 (17)

Ny y

In formula (17) parameteN,, is number of weights, paramet®, is size of the output

vector, parametelIC, is pattern capacity, parametets, and K, are small positive

numbers.

3.2 Self Organizing Maps

Self Organizing Map (SOM) [Kohonen 2001] is neunatwork model that maps high
dimensional data onto small dimensional (usually-tihmensional) space. After using this
algorithm similar vectors from the input space m@ated near each other in the output
space. Mainly SOM is used for visual representabioimput space and data preprocessing.
SOM can be used to determine differences in behafionvestigated system. It might
help to find abnormal modes in behavior of systé&tso analysis of data with help of
SOM can be useful for semantic interpretation os@rs. Mostly SOM is known as an
unsupervised algorithm, but there is also a supedvimplementation of SOM. The SOM
combines itself both vector quantization [Kohon@®P] and vector projection [Kohonen
2001] algorithms.

Usually SOM represents itself either hexagonal estangular grid of neurons. Each
neuron is characterized by two vectors. The fiesttor represents coordinates in the input

space and the second vector represents coordimatéd® map. Each neuron is connected
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to adjacent neurons by neighborhood function. Tize ®f neighborhood is slightly
decreased during training process. The hexagomhttanrectangular grids with different

size of neighborhood are illustrated in figure 3.5.
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Figure 3.5 — The rectangular and the hexagstnattures with different neighborhood
size
Topology of SOM is fixed from the beginning. TulrSOM toolbox for Matlab [Vesanto
et al. 2000] suggests that the map should not bqurare form. One side of the map should
be bigger than other approximately twice. Alssuggests using heuristics to define initial

number of neurons:

Number of neuron;WNumber of samples (18)

Naturally, before starting the training algorithweights of neurons should be initialized.

There are several means to initialize them:

Random initialization
Sample initialization

Linear initialization
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In the random initialization procedure weights guigalized with small random values. In
the sample initialization procedure weights aréiahzed with random samples from data
set. In the linear initialization procedure weighdse initialized according to linear

subspace spanned by the two principal eigenvefrtmrsinput data set.

Two approaches exist to train SOM. The first appinogs sequential training. In this
approach in each training iteration one samplehigsen randomly. After that winner-
neuronc (also called as Best Matching Unit (BMU)) can ketedmined using formula
(19).

[x=m, = miion—mi” (19)

In formula (19) one can understand we need to séhec closest neurom, from all

neuronsm to the input vectox. After finding BMU the weight vectors should bedaped.

In this step not only weight of BMU should be upthtbut also weights of neighbors of
BMU should be updated. The rule for updating weigfirsome neuron is defined by the

following formula:
m(t+1) =m()+h; O -m(E ) (20)

In formula (20) x(t) is randomly selected vector from data set at timb, (t) is the
neighborhood kernel. The neighborhood kernel igtion that defines influence region of
each sample on SOM. This function consists of tadsp The first part is neighborhood
function h(t), which depends on time and distance between migg dime second part is
learning rate functior(t) . There are quite a lot of variants of neighborhéaattions.
The most used is bubble and Gaussian neighborhgoetidns. Bubble function defines
constant region for whole neighborhood. Gaussiaghierhood function is defined by
formula (21).

i

h(t) = eXp(_T(t)

) 121

23



Where r, and r, are locations of BMU on the map and some neighigomeuron

respectively.

Function a(t) can be determined using formula (22). Constantené B are selected in

such a way to guarantee good convergence of tcpalgorithm.

a)= 2" @2

The neighborhood kernél; can be determined from formula (23).

h;(t) =h®a(t) (23)

Usually training process is divided into two parts. the first phase, quite large

neighborhood radius and large learning rate ard.usehis phase neurons should roughly
spread on the map according to the data. In thenslephase, small neighborhood radius
and small learning rate are used. In this phaseonsushift more precisely to take their

final positions on the map. Example of one trairstep is illustrated in figure 3.6.

Figure 3.6 — Training example
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In figure 4.6 circles denote neurons. Black ciralesote neurons, which moved closer to
input example denoted by X. These neurons werecteelewith help of neighborhood
function. Thus not only weights of BMU are changedt weights of the closest neurons

are updated as well.

Another method that is used to train SOM is Battgorthm [Kohonen 1993]. Batch
algorithm was introduced by Teuvo Kohonen in 198&tch algorithm is parameter-free
and very fast version of SOM. This algorithm isoalkgrative, but in contrast to sequential
training, instead of one random sample, whole datéas used. During training data set is
spread according to Voronoi regions. Voronoi regdisome neuron is the group of all

vectorsx to which it is the closest one. Voronoi regiomnléined by formula (24).
Vi ={ xlm =~ <[m; i £ } (24)

Formula (25) is used to calculate new weights ofroes.

> ahe %,

mt+y) =220 25)

> he®

In formula (25)h, (t )is kernel function and is input vector.

3.3 Matlab Environment

In this subsection Matlab [Matlab] environment msdribed. Basis functions of Neural
network toolbox and SOM toolbox [SOM toolbox] aresdribed as well. In this work we
used SOM toolbox (developed in Helsinki Universitly Technology) instead of native
Neural network toolbox, because native toolbox duesprovide all the required functions

for investigating and analyzing data.

Matlab is powerful tool for realization of differemathematical tasks, data processing and
visualizing information. Matlab is widely used fdecreasing time of development; it

allows fast comparison of different results to fihé best solutions.
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MatLab provides the following features:

* Fast and efficient implementation of matrix calaulu
»  Graphics for representing information

* Interactive visual environment for programming

* Interfaces with external languages (C/C++, Java)

e« Connection to databases

Special sets of functions (toolboxes) are preseMatlab. These toolboxes play main role
for solving particular tasks. Matlab contains thldwing base toolboxes:

* Communication toolbox

* Control system toolbox

* Fuzzy logic toolbox

* Image processing toolbox
* Neural network toolbox

*  Optimization toolbox

» Signal processing toolbox
» Spline toolbox

» System identification toolbox

Matlab has quite good Neural network toolbox. llbwbk modeling a lot of architectures of
neural networks such as MLP, Radial Basis Fundietworks, Recurrent networks and
many others. To model MLP Matlab has a lot of défe functions and parameters. Thus
it is impossible to describe all possibilities oatéab in one section. To give an idea how to
build and simulate MLP, let us look through simgeample, which represents itself

skeleton code of simple MLP:
net = newff(minmax(P), [I1,12,13], {'a_functionH, function2','a_function3'}, 'tr_method");
net.trainParam.show = 50;

net.trainParam.epochs = 150;
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net.trainParam.goal = 1e-3;
[net,tr]=train(net, P, T);
Y= sim(net, P);

In the above example new MLP object was createaguswff() function. Paramete? is
the name of training data set. Functmimmaxcalculates matrix, which contains minimum
and maximum values from training data set. MLP 3asdden layers, this was defined by
the second parametdtl( 12, 13]). Where parameteid, 12 and|3 define the number of
neurons in the first, in the second and in thadtkaers respectively. The third parameter
({'a_functionl','a_function2','a_function3'}jdefines activation functions for each layer.
Parameten_functiondefines name of activation function. This parames: have one of

the following values:

* logsig(sigmoid activation function)
» tansig(hyperbolic tangent activation function)

* purelin(linear activation function)

Parametetr_methoddefines training method. There are a lot of tragninethods that are
realized in Matlab, for example such @ainb (batch algorithm)trainrp (resilient BP
method)traingd (gradient descent algorithm) and many others.

Matlab allows monitoring of training process. Itspliays a figure with error function.
Updating frequency of the figure is definedrmst.trainParam.shoyparameter. Number of
epochs is defined byet.trainParam.epochparameter. Parameteet.trainParam.goal
defines desired threshold to stop training. Fumctrain(net, P, T)is used to train MLP.
Parameteil is the name of matrix with desired outputs of MIERInctionsim is used to

simulate MLP.

Matlab also contains implementation of SOM, but was mentioned earlier this
implementation is not good. SOM toolbox from HUToyides qualitative GUI and

realization of all necessary functions. Like ineagth MLP implementation, describing of
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all possibilities of this powerful toolbox might lsempared with size of a book. Therefore

only main features are described.

Naturally, structure that contains all necessarfprination about data set is needed.
Functionsom_data_struds used for this purpose. To train SOM differerthods can be
used such asom_makesom_randinit som_batch_trainsom_seqgtrairand many others.
SOM toolbox contains implementation of differentistering algorithms for example such
as k-means and hierarchical clustering algorithmt & different auxiliary functions
allows performing such actions like calculating BMdlstributing labels, modifying of
data set and many others. SOM toolbox provides aflpossibilities to visualize data. It
allows visualizing different kinds of maps in difémt ways. Examples of some

visualization of SOM can be found in chapter nunfher.

3.4 Discussion

MLP is well-known approximator of any function thitscan be used to build core of
NeuroSearch algorithm. Determining of the corréeicdure of MLP is quite complex task,
but as was shown in section 3.1.3 some prelimiséps can be taken. Since we want
algorithm with good generalization properties somays to avoid the overlearning
problem are described in section 3.1.2. SOM s lyidesed tool for analyzing and
preprocessing data. Therefore its using will beelieral in our work. Matlab environment

provides all required tools to do research pawarfk with high quality.
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4 Evolutionary Computing and NeuroSearch Algorithm

In this chapter we describe strategies that wedenaken to build efficient algorithm for
solving the resource discovery problem. This atbani was developed as part of Cheese
Factory project [Cheese]. The core of this algonitis MLP, which processes different
inputs to produce solution about further forwardiofj query. Training of MLP for
NeuroSearch algorithm is quite complex task, bexaogially we have only the input
information and we know nothing about relationshipstween input components.
Evolutionary Computing (EC) approach is used tovesahis problem Therefore this
chapter reviews methods of EC as well. Since weHGave don’'t know anything about
the decision mechanism of NeuroSearch. Thus we twaveview existing NeuroSearch’s
problems, which are related to the decision medmaniMore detailed attention to the

solving of these problems will be paid in chaptemier five.

4.1 Introduction to Evolutionary Computing

Methods of EC or Genetic Algorithms (GA) were imuged by J. H. Holland [Holland
1975]. Nowadays GA is widely used to solve optirti@atasks. Tuning of weights of NN
is classical example of such tasks. Basis of G#tashastic optimization. Therefore main
disadvantage of these methods is that it is imptssd know beforehand how many

iterations are needed to find an optimal solution.

Since GA has a lot in common with biology, we neeéf introduction to some biological

terms. Each biological individual is representethwis phenotype and genotype. In fact
phenotype determines physical manifestation of @yardsm in real world. Genotype is
internally coded inheritable information, which aarried by all living organisms. Each

gene or in other words element of genotype’s infdrom has its representation in
phenotype.

To solve some practical task we need to repredigntaperties of an object in form, which

is suitable for GA. Mostly for this purpose simpii strings are used.
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Classical variant of GA uses two basis operatotse Tirst operator is crossover. To
perform crossover two individuals from populatiome aselected. After that their
chromosomes are divided at random point into twdspalrhe first part of the first
chromosome connects to the second part of the detonmosome and the second part of
first chromosome connects to the first part of seélcchromosome. Hereby we get two new

individuals. This process is illustrated in figurd..

Figure 4.1 — Crossover

The second operator is mutation. To perform mutatioe random bit is selected. Then
this bit is inverted. Mutation is used to guarand@eersity of population and introduces

new material to the population.

GA uses the following steps:

1. Initial population is formed randomly.

2. Calculating values of fitness function for all imdiuals in the population. This

function determines how well the population at sonmmnent is.
3. Selecting individual from population.

4. Selecting another individual according to crossopeobability and perform

crossover for these two individuals.

5. Performing mutation for new individuals accordingorobability of mutation.
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6. Inserting new individuals to the population and o@mg some individuals with bad

value of fitness function.
7. Executing operations for all individuals startimgrh step number three.

8. If new value of fitness function satisfies us th8A stops, else starting a new
generation by executing of all operations startimogn step number two.

The main part of GA, which significantly influences its performance, is selecting
individuals for crossover in steps number three faogl. Most common way is to use of
roulette wheel method [Chen & Smith 1999]. The idéthis method is the following: the
size of the sectors on the roulette wheel for evedyidual is assigned according to
fitness function of this individual. The use ofghnethod increases probability to save
phenotype of ‘better’ individuals and at the sam@etsaves chances for weak individuals
to pass to new generation. Another quite usableoagp is tournament method [Blickle &
Thiele 1995]. Using of this method is concludedhe following: several individuals are
selected and individual with the best value ofd#s function is selected. Some realizations
of GA use strategy of elitism [Yamauchi & Rand&94]. This strategy guarantees saving
the best individuals for the next iterations. gyt of elitism guarantees fast convergence
of GA, but GA with this strategy might find localimmum instead of global.

4.2 Description of NeuroSearch

In this subsection description of NeuroSearch dlgor is given. The description mostly
based on information given in [Vapa et al. 2004].

4.2.1 Architecture of NeuroSearch

Decision mechanism of NeuroSearch is based one-{agrceptron. The first hidden layer
contains 16 neurons, the second hidden layer 4onsusind the output layer 1 neuron.
Hyperbolic tangent is used as an activation fumciio the first and the second hidden
layers. Threshold activation function is used ie thutput layer. The queries spread

through network to all neighbors according to decismechanism of Neurosearch. If
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targeted resource is found on some node then dde sends back reply using the same

path with the query, which found this resource.

Figure 4.2 illustrates processing of NeuroSearsbuee query.

Neighbor
node

P2P NODE
Decision @

MLP packets

/N o

QUERY

Neighbor
node

Data from the

environment

Figure 4.2 — Processing of NeuroSearch resource/que

NeuroSearch algorithm is under active developm#wdrefore structure of MLP and
numbers of inputs are changed all the time. Thgiral version of NeuroSearch included
the following inputs:

» Bias= 1is the bias term.

* Hopsis the number of hops in the message.

* NeighborsOrdertells in which neighbor rank index this receivercompared to
other receivers. The receiver with the best rarskvadue of 0.

* Neighborsis the number of the receiver’s neighbors.

* MyNeighborgs the number of node’s neighbors.

32



* Senthas value 1 if the message has already been fdeddo the receiver using
this link. Otherwise it has value of 0.

* Receivechas value 1 if the message has been receiveéreaibe it has value of
0.

Naturally, all inputs should be normalized, in atiMdrds they should belong to interval
from O to 1. To understand why normalization is dezk let us consider an example.
Assume that we have MLP with two inputs. The finfftut processes values, which belong
to interval from O to 2. The second input processdges, which belong to interval from
100 to 1000. Using of non-scaled input informatlead us to situation where the first
input will be totally useless, because only valétresn the second input will satiate the
output with themselves. Normalization function foputs Hops and NeighborsOrderis
defined by formula (26).
1

f9=—" (26)
InputsNeighborsandMyNeighborsare scaled with function, which is defined by faten
(27).

f () -1-1 (27)
X

4.2.2 Training of NeuroSearch

The topology of the P2P network represents itselfgr-law graph, which was generated
using Barabasi-Albert model [Barabasi & Albert 1pfBarabasi 2002]. The graph obeys
power-law networks’ neighbor distribution (2). lorinula (2) for Barabasi — Albert model

y parameter is equal to 3. The graph contains 1@@s0lhe highest degree node has 25

neighbors.

Decision mechanism of NeuroSearch is based on MiRce we do not know exact
relationships between input parameters and cowaae of target function we cannot use

usual strategies to train MLP. As will be mentioriadsection 5.1, GA is widely used
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method to adjust weights of NN. The main advant#ghis method is that we can get well
trained NN even if we do not know anything abowivhinputs affect on certain decision.
There is only one thing that we need and it isefs function. NeuroSearch uses the

following general fitness function in its trainipgocess:

. _ n

fitness, = Zj:lscorq (28)
Where hdenotes index of neural network apdenotes index of some query.

The following rules are used to calculat®re

availableresources

1. If foundresources 5 then
availableresources .
score=50* 5 — packets when half of the available resource

instances are found from the network, the fitnesiesr does not grow if neural

network locates more resources.

availableresources
2. If found resources< and foundresources>0 then

2

score=50* foundresorces- packets if the number of found resources is not

enough then the neural network develops if it lesahore resources.

3. If foundresorces=0 then scorezl—;: if none of the resources are

packetst1

found then the neural network should increase tmaber of packets sent to the

network.

4. If packets>300 thenscore=0: an algorithm that eventually stops is alwaysdrett

than algorithm that does not.

Where parameteavailableresourcesdenotes number of resource instances that can be

found from the network. Parametdéound resorceslenotes amount of replies from nodes
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where targeted resource was found by the neuraonlet Parametepacketsdenotes total

amount of packets, which were used to locate tadyetsources.

To train NeuroSearch only mutation operator is ugdds is done by random variation

using normal distribution. The random variation dtion is defined with the following

formulas:
o,(j) = o,(j)expeN; (0D), j =1,...,N,, (29)
w (j) =w ())+ 0o (j))N; 0D, =1...N, (30)
r=—* (31)

Where N,, is the total number of weight#y; (0)) is a standard Gaussian random variable
resampled for everyj, o is the self-adaptive parameter vector for defirting step size

for finding the new weight and/ (j) is the new weight value.

4.2.3 Simulation Results

Simulation of NeuroSearch showed that it is ablmtate approximately half of resources
from the P2P network. Mostly NeuroSearch locatesemiesources than BFS algorithm
with TTL 2 and in the same time less than BFS dligor with TTL 3. Behavior of
NeuroSearch is quite similar to BFS with TTL 2 lretcore of the P2P network, but better
in the edges. Since the goal of NeuroSearch isdaté only half of available resources,
therefore BFS algorithm with TTL 3 locates sigrafidly more resources than
NeuroSearch. But BFS with TTL 3 uses much more @acko locate these resources.
Efficiency of BFS algorithm significantly dependa oonnectivity of node, which starts
the query. But simulation shows that Neurosearchindependent on connectivity of

starting node.
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4.3 Discussion

Despite of time consumption, applying of GA to mraNeuroSearch is quite useful
approach and this is probably the only possible waygroup all components (input

information) to make decisions about further forvag without knowledge of correct

relationships between components in the power-l@waorks. The main problem of

NeuroSearch algorithm is that we do not know amghabout its decision mechanism.
This causes unclear situation with problem defnitand quite weak basis for chosen
neural network architecture. These problems wemedad using EC in training process,
but not actually solved. Therefore it is quite idifilt to say about theoretical performance
maximum of NeuroSearch algorithm. Simulation resshow that NeuroSearch algorithm
has quite good performance. But it is roughly seem simulation of NeuroSearch that it
has some problematic areas (for instance coregbatte P2P network) where it makes
sometimes non-optimal decisions. These areas sheulivestigated more carefully. More
detailed attention to all these questions will b&pn chapter number five.
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5 Data Analysis

In this chapter data analysis techniques are pempda® investigate behavior of
NeuroSearch algorithm in the space of its decisibhe SOM [Kohonen 2001] is used to
analyze data obtained from simulation of NeuroSeaBata represents itself results of
simulation of 100 queries started from each no@deareters of the P2P network are the
same that were described in section 4.2.2. Dattored in XML files. In these XML files
each decision is represented by 16 input paramétersiding bias), which were used as
an input vector for the MLP. Also in these XML 8lall these 16 input parameters are put
in correspondence to output of the MLP. To extiabdbrmation from these files XML
parser was written using PHP language. To anaheextracted data SOM toolbox [SOM

toolbox] for Matlab [Matlab] was used.

5.1 Objectives of Data Analysis

Since we do not know the decision mechanism of d®earch we cannot say anything
about the complexity of resource discovery in P2Btesn. Naturally, each component

(e.g., query hops, number of neighbors) in theesydtas its own properties, which might
depend on the state of the system (in other wondstleer components). If behavior of the

system is sum of all components then the systesiriple, even if the system has a lot of
components. Such system can be described with af sguations. Some systems have
unclear dependencies and their behavior and prepaerannot be analyzed separately or
removing of components causes loss of principapgmaes. In this kind of cases we are
dealing with complex system. The main question Hrates here is what kind of system
resource discovery problem in peer-to-peer netwesrklf resource discovery can be

classified as simple system it would be benefitbtause analytical model that contains

rules and equations to describe the behavior ofyhem.

Developed algorithm (NeuroSearch) can be considasethe main part of information
model of the system, which utilizes different prdjgs of P2P environment to find
efficient strategy for resource discovery problér. build this information model black

box method was used. The method was introducedibypé&t/[Wiener 1948]. In contrast to
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analytical approach, where inner structure is medieh the black box method external
behavior of the system is modeled. Neural netwagrkeaombined with evolutionary
computing is quite common method for building blab&xes. Naturally, using our

information model (neural network inputs) it is gudifficult to explain its behavior.

To answer the question about complexity of the uss® discovery problem we need to
solve inverse task. In other words is it possilbleexplain behavior of the system using
analysis of input-output pairs of the system? Ats@valuate the quality of algorithm we
need to evaluate the correctness of inverse taskulse algorithm without general abilities

becomes useless. Correct task requires that tleeviof conditions are met:

» Existence of solution for whole data set
» Existence of unique solution

» Stability of exact solution to little changes otalaet

The SOM is widely used approach for data mining feadiure selection. Good illustration
of using SOM for data analysis is given in [Kaskae 1999] and [Vesanto & Alhoniemi
2000]. Since the SOM combines vector quantificatitgorithm and projection algorithms,
the SOM suits quite well for our analysis. Onelw# EOM properties is that near vectors
from the input space will be positioned near eattieoin the output space. This helps to
investigate existing relations between input congmb® and their influence on particular
decision of NeuroSearch. Also we can investigatisteling structures and find possible

decision boundaries, which describe behavior ofrbigaarch.

5.2 Investigation of NeuroSearch

In contrast to the version of NeuroSearch that described in [Vapa et al. 2004], in this
chapter we investigate new version. The differdmetsveen two versions is the number of
the MLP inputs. To provide more efficient searchtha P2P network the following inputs

were added:

* From has value 1 if the current message was receiveah filus receiver.

Otherwise it has value of O.
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» toUnsearchedNeighborgells how many unsearched neighbors the receiver i
expected to have. If the query has not travelealigiin the receiver earlier then the
value is equal tdNeighborsminus one. Otherwise the query has registered how
many neighbors were unsearched when visiting theiver. If the current node
was not visited earlier then this input is equategistered number of unsearched
neighbors minus one. If the current node was vs#arlier then this input is
equal to registered number of unsearched neighbors.

* initiatorNeighborAmounis the number of the query initiator’s neighbors.

» fromNeighborAmouns the number of the previous sender’s neighbors.

» repliesNowis the number of replies the query has locatetsiquery path.

» packetsNows the number of packets the query has producéd query path.

» repliesToGets the number of resources that needs to be lbcate

» toVisitedhas value 1 if the message has already travetedgh the receiver
earlier. Otherwise it has value of 0.

* randomNeighbohas value 1 for randomly selected receiver arat 0ther

receivers in the current node.

Normalization function for inputioUnsearchedNeighborsepliesNowandpacketsNows
defined by formula (32). Normalization function fanputs fromNeighborAmount
initiatorNeighborAmounandrepliesToGets defined by formula (27).

F(X)=1-—— (32)

x+1

To investigate clustering structure of decision haagsm of NeuroSearch U-matrix was
built. U-matrix is commonly used to illustrate tbatput map. U-matrix shows distance
between neighboring units on the map. Thereforecare use it to investigate clustering
structure of the output map and data as well. Tthakowe also put labels and ‘hit’ units on
the output map. NeuroSearch is built in such way its decisions are separated on two

semantic groups:
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» If output of MLP has negative value then NeuroSle#@aot forwarding the query
further.

* Otherwise it is forwarding.

To investigate behavior of NeuroSearch more acelyrave divide each of these two

groups into three parts:

* If outputof MLP < -3 then decision belongs to class ‘0’

* If —=3<outputof MLP < -1 then decision belongs to class ‘1’
* If —1<outputof MLP <0 then decision belongs to class ‘2’
* If O<outputof MLP <1 then decision belongs to class ‘3’

* If 1<outputof MLP < 25 then decision belongs to class ‘4’

e If outputof MLP = 25 then decision belongs to class ‘5’

One can see that classes 0, 1 and 2 are respotsibhet forwarding’ decisions and
classes 3, 4 and 5 respond to ‘forwarding’ decsidiot equal intervals were selected to
investigate behavior of NeuroSearch more thorougtdyecially in areas around zero,
where NeuroSearch has boundary on decisions. Thlenterval of the output of the MLP
is concluded approximately in range from -5 to Befefore we selected different intervals
for negative and positive decisions to guarantagaledistribution of decisions between
homogeneous classes. The range of negative clessesial to 2. The range of positive
classes is equal to 1.5. To investigate more cilyedecisions around boundary between
positive and negative decisions we selected smallerval for classes that are responsible
to these decisions, this interval is equal to 1r @ssumption is based on that decision of
NeuroSearch in numerical format is somehow comdlatith probability to forward the

query further.

‘Hit’ units show how many and which decisions aeaneach other, in other words which
units make cluster structure. ‘Hit' units and cksshave the following color

correspondence:

* Blue color 8 ) accords to class ‘0’
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Cyan color[] ) accords to class ‘1’

Green color[] ) accords to class ‘2’

Yellow color (] ) accords to class ‘3’

Magenta colorlll ) accords to class ‘4’

Red color @ ) accords to class ‘5’

Figure 5.1 — U-matrix
Figure 5.1 illustrates U-matrix with ‘hit" units drlabels, which are pointed on different

classes. Labels were distributed on the U-matrirgus/ote’ system. According to this
system the class of each neuron is selected basdgdeomaximum amount of entries

belonging to one class in the neuron’s region. &ee the neuron gets the color that is
In figure 5.1 one can see there are a lot of alast@ the output map. To know which

most representative to the data elements that mayhe neuron’s cluster.

variables are responsible for these clusters, wik @mmponent plane. This component
41

plane shows what variable values of data pointsrigeto particular cluster.



Figure 5.2 shows component plane. In the figurelalinputs excluding bias are shown.
Analyzing U-matrix with distribution of ‘hit’ unitgogether with component plane we are
able to say that NeuroSearch has learned thanitigfficient to send the queries when at
least one of variableBrom, toVisitedand Sentequals to one. Also wherurrentVisited
variable is equal to one NeuroSearch mostly do¢s@ad the queries further. But there
are some samples (witlurrentVisitedvariable is equal to one) where NeuroSearch sends
the queries further. It might be caused by low iudraining, because optimization
process is based on randomness had not many gensrahd good fithess value might
have not been reached. Thus we are able to satht#ss four inputsHrom, toVisited,Sent

andcurrentVisited are used to stop the queries.

From component plane we are able to see tihldhsearchedNeighborand Neighbors
variables are correlated. They have similar coletrithution on the output map. Also we
are able to see high correlation betwpanketsNowandHopsvariables. This dependency
can be easily explained. Number of packets growsmwiumber of hops is increasing.
Variables fromNeighborAmountpacketsNowand as consequend#ops are correlated
somehow. This might be caused by the fact that d&esrch has tendency in general to

forward queries to most connected nodes.

Analyzing Neighbors and toUnsearchedNeighborsariables it is possible to say that
NeuroSearch does not forward the queries furthéndaée inputs have small values. To
study decision mechanism of NeuroSearch more tlyigufour inputs From, toVisited,
Sentand currentVisited were not taken into account (because we know tabweir
influence on decision mechanism). Also our furthwvestigation is based ohRops
variable, because only this variable shows the sthalgorithm in particular time interval,
in other words analyzing intervals of this variable are able to monitor the queries
through their path. To do this we removed all s@spvhere at least one of these four
variables is equal to 1 and samples whéopsvalue is different from the one selected for

the current investigation.
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In the study of NeuroSearch was also noticed traatrdSearch has 7 hops as maximum
number ofHopsin the message. Thus we separate our investigatioh parts. Each case

is for its own value oHops.

U-matrix foHopsvalue is equal to 1

Figure 5.3 —

partitioning of decisions. Mostly classes that espond to decisions about forwarding are
44

located in the bottom right cluster. Also coupldludse classes are located on the left part.
plane it is easy to see that for right bottom @ubleighborsOrdewariable is responsible.
In this cluster this variable has the highest valiteerefore only the highest ranking node

Figure 5.4 shows component plane Hops value is equal to 1. Analyzing component
will get the query at the first step. For forwamglidecisions, which are stored on the left we

Analyzing U-matrix forHopsvalue is equal to 1 it can be seen that we havte good
To know which variables are responsible for thigipaning we built component plane.



have more complex situation. For this region weadnle to say that in this region we have
some quite complex interaction between almostailables. To extract this subcluster we
are able to say that variablendomNeighboshould be equal to 1, variahblepliesToGet

should be quite high, variableighborsshould have the smallest value and variable

MyNeighborshould have high value.
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Figure 5.4 — Component plane tdopsvalue is equal to 1
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Figure 5.5 - U-matrix for number of hops in the sage is equal to 2

Figure 5.5 shows U-matrix for the hops value innessage is equal to 2. From Figure 5.5

one can see that mostly classes that respond tsialec about forwarding are located in

the bottom of U-matrix. Also we can see some cksisat correspond to decisions about

forwarding on the upper left side. To determineittfluence of each variable to particular

decision we built component plane for hops in thessage is equal 2. Figure 6.6 shows

this component plane. Analyzing this component @lame can see that decisions are based

according tofromNeighborAmounand Neighborsor initiatorNeighborAmountvariables.

represent

Naturally fromNeighborAmount and initiatorNeighborAmount variables

themselves the same information because initiatdrpmevious sender of the query is the

same node. NeuroSearch prefers to send the queri@®st connected neighbors. Also

ofromNeighborAmount or

little

a

depend

NeuroSearch

of

decisions

initiatorNeighborAmountvariable. These variables ‘move’ decision boundaryit. The
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higher value ofromNeighborAmountariable is allowed to forward packets to littes$

connected nodes. Influence of other variables rsnmal.

MeighborsOrder Meighbaors hyMleighbors
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"
r -0.724 . -0.805
g
initiatorMeighbarAmount
0.943
r ' [D 724

RepliesToGet randomMeighbor
" 0.893

0.667

-0.5583

‘0.5

Figure 5.6 — Component plane for number of hopghémmessage is equal to 2
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Figure 5.7 shows U-matrix for the hops value inrtessage is equal to 3.
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Figure 5.7 - U-matrix for number of hops in the ssge is equal to 3

Analyzing U-matrix one can see that classes thaespond to decisions about forwarding

are located mostly on the left part of the U-matiiere we are not able to see strict

Here we are onlytalday about general tendencies. To

separation between classes.

know which variables correspond to particular decisve built component plane. Figure

5.8 illustrates component plane for number of hapgbe message is equal to 3. Analyzing

this component plane one can see that decisioinstlas previous case are mostly based on

Neighborsor toUnsearchedNeighbonrsariables. NeuroSearch does not forward the gglerie

connected nodes.

to low
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NeuroSearch has quite unclear behavior when varfbighborsOrdeiis high. It is hard
to say exactly what cause for particular decisiothis area is. Influence of other variables

Figure 5.9 illustrates U-matrix for the hops vainéhe message is equal to 4.

is minimal.

Figure 5.9 - U-matrix for number of hops in the sage is equal to 4

matrix one can see that there is netsorder in the data. Mostly classes,

Analyzing U

which correspond to positive decisions about fodivay, are located in the upper central
zones. Some of these classes are overlapped. W \Which variables are responsible for

these decisions component plane were built. Compgyene is shown in Figure 5.10.
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Figure 5.10 — Component plane for number of hoghémmessage is equal to 4
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Analyzing this component plane one can see thasides mostly are based deighbors
queries to low-connected nodes. Also NeuroSeares dot forward the queries to high

big. The area whereandomNeighborvariable is equal to 1 is highly overlapped with

toUnsearchedNeighbom@ndNeighborsOrdewariables. NeuroSearch does not forward the
connected nodes MeighborsOrdewariable is high. Influence of other variablesxat so

Figure 5.11 illustrates U-matrix for the hops vailm¢he message is equal to 5.

different classes.
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Figure 5.11 - U-matrix for number of hops in thessege is equal to 5
Analyzing U-matrix one can see that there are wotmsich classes that correspond to
positive decisions about forwarding. Some of ttessés are overlapped. Especially those,
52

Component plane for case where number of hopseimtbssage is equal to 5 is shown in

which are related to decision boundaries (the dudpthe MLP is around zero).
Figure 5.12.
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Analyzing component plane that is shown in FigurE25one can see that NeuroSearch

continues to avoid forwarding the queries to thesitmoonnected neighbors (where

NeighborsOrdervariable has high values). We are able to say hiea¢ we have quite

complex situation with separation of different slas of decisions. Almost all variables

take part into making of decisions. The classesdbaespond to positive decisions about

forwarding of the queries have low valueioitiatorNeighborAmountvariable, value of

MyNeighborsvariable should be high, value Nighborsvariable should be rather high

than low and in the same time value NéighborsOrdervariable should be as low as

possible and value ahndomNeighbowariable should be equal to zero (in areas where

variable randomNeighboris equal to one we have very unclear structure inid

impossible to extract accurately decisions). Ofrseuother variables also have some

influence on decisions’ mechanism of NeuroSearah this influence is not so big and it

mostly duplicates contribution of other variables.
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Figure 5.13 - U-matrix for number of hops in thessege is equal to 6
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-matrix together with component planeeocan see that there is better

separation of decisions than in most previous cades positive decisions are located in
the upper part of U-matrix. From this analysis &mking into account the previous steps

U-matrix and component plane for the hops valu@message is equal to 6 are shown in
we are able to say that NeuroSearch has now tepmdenéorward the queries to the

middle-connected nodes. Because valuBl@fjhborsvariable is not so high and value of
NeighborsOrdewariable is small. Also positive decisions are elsterized by the highest
Figure 5.15 illustrates U-matrix for the hops vailm¢he message is equal to 7.

value ofMyNeighborsvariable. Influence of other variables is not gp b

Figure 5.13 and Figure 5.14 respectively.

Analyzing U
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Figure 5.15 - U-matrix for number of hops in thessege is equal to 7
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Analyzing U-matrix one can see that there are oy instances of classes that

correspond to positive decisions about forwardiifclasses are well separable.

Component plane for case where number of hopseimtbssage is equal to 7 is shown in
Figure 5.16. Analyzing this component plane onesmmthat almost all variables give the
same contribution to decisions. Good extractionclafsses that respond to positive
decisions about forwarding can be done using only Yariables. For example we can

select information fronfromNeighborsAmourandNeighborsvariables.

5.3 Rule Based Algorithm

Rule Based algorithm (RBA) was produced using asiglgf SOM. RBA is based on rules
which were extracted using U-matrix and correspogdiomponent plane. To produce
each rule we need to carefully investigate U-matioyether with decision distribution on
it. After that we need to confront some areas wiveeewant to determine a rule with
ranges of variables in these particular areastHaravords we need merely to define more

exactly dependencies that we found in section 5.2.

After careful analysis we got extracted the follog/set of rules:

1. if Sent, currentVisited, Fromr toVisitedis equal to 1 then do not forward the query

forward.

2. if Hops = 1landNeighborsOrder = 1then forward the query further.

3. if Hops = 1and randomNeighbor = land MyNeighbors > repliesToGetthen

forward the query further.

4. if Hops = 0.5andfromNeighborAmount < 0.5&ndtoUnsearchedNeighbors > 0.87

andrandomNeighbor = Othen forward the query further.

5. if Hops = 0.5and fromNeighborAmount < 0.68ndtoUnsearchedNeighbors > 0.8

andrandomNeighbor = @hen forward the query further.
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6. if Hops = 0.5andfromNeighborAmount 0.7 andtoUnsearchedNeighboz 0.85

andrandomNeighbor = Othen forward the query further.

7. if Hops = 0.5andtoUnsearchedNeighbors 0.83 and randomNeighbor = lthen

forward the query further.

8. if Hops = 0.5and NeighborsOrder> 0.25 and NeighborsOrder< 0.35 and
toUnsearchedNeighbors> 0.75 and toUnsearchedNeighbors< 0.8 and

randomNeighbor = @ndrepliesNow = then forward the query further.

9. if Hops = 0.5andNeeighborsOrder > 0.4¢hen forward the query further.

10.if Hops < 0.34 and Hops > 0.33 and toUnsearchedNeighbors 0.66 and
toUnsearchedNeighbors 0.81 and randomNeighbor = Gand NeighborOrder=
0.25 then forward the query further.

11.if Hops < 0.34 and Hops > 0.33 and toUnsearchedNeighbors > 0.8&and
NeighborsOrder< 0.9 then forward the query further.

12.if Hops < 0.34and Hops > 0.33and packetsNow < 0.&nd NeighborOrder > 0.9

then forward the query further.

13.if Hops > 0.3andHops < 0.4andinitiatorNeighborAmount < 0.6andrepliesNow
< 0.1 andtoUnsearchedNeighbor > 0.%6en forward the query further.

14.if Hops > 0.3and Hops < 0.4and NeighborsOrder < 0.55nd repliesNow > 0.1
and toUnsearchedNeighbors > 0.78nd initiatorNeighborAmount < 0.6&hen

forward the query further.

15.if Hops = 0.25and toUnsearchedNeighbora 0.75and myNeighbors> 0.8 and
NeighborsOrder< 0.25then forward the query further.

16.if Hops = 0.25 and repliesNow < 0.1and NeighborsOrder < 0.35 and
toUnsearchedNeighbors > 0.7hd myNeighbors > 0.74hen forward the query
further.
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17.if Hops = 0.2and toUnsearchedNeighbors >0.7&nd toUnsearchedNeighbors <
0.93and myNeighbors > 0.8&nd NeighborsOrder < 0.26hen forward the query

further.

18.if Hops > 0.16 and Hops < 0.18 and NeighborsOrder < 0.17 and
toUnsearchedNeighbors > 0.7%nd toUnsearchedNeighbors < 0.8Gnd
initiatorNeighborAmount < 0.67and repliesNow < 0.1then forward the query

further.

19.if Hops > 0.14 and Hops < 0.15and toUnsearchedNeighbors = 0.7&nd
fromNeighborAmount < 0.76 and fromNeighborAmount > 0.66 and
myNeighborAmount = 0.%hen forward the query further.

One can notice all inputs in the rules are givaargierforming of corresponding scaling
functions. If one is interested in real value oé gharameters he can merely find these
values by applying inverse scaling functions, ihestwords he should solve receiving

equations.

After simulating NeuroSearch and RBA we got valoEStness function. These values are
around 35000 for both algorithms.

Table 5.1 shows efficiency of four algorithms. Qraa see in this table that NeuroSearch
and RBA have almost the same level of performaftes means that RBA adapted
behavior of NeuroSearch and we are able to say tetSOM suits quite well for
analyzing of NeuroSearch. Both these algorithmsehaetter performance compared to
BFS-2 and BFS-3 algorithms. Despite on that BFS&sudewer packets than NeuroSearch
does, but BFS-2 locates fewer resources. Also anesee that changing from BFS-2 to
BFS-3 has disastrous consequences. We are abkey tthat NeuroSearch utilizes some
quite good search strategy. It finds enough ingamé available resources and in the same

time uses satisfactory amount of packets compar&d5-3.

60



Algorithm Packets Replies
BFS-2 3000 619
BFS-3 12464 1325

NeuroSearch 4703 979
RBA 4904 963

Table 5.1 — Comparison between algorithms

5.4 Discussion

After investigating behavior of NeuroSearch wealrke to say that the SOM is an efficient
tool to explore properties of data and make deeyais of this data. We are unable to
give exact answers about complexity of the syst®etause from one side NeuroSearch
has very simple decision mechanism, but from osie we have seen during our analysis
that NeuroSearch has certain problems. These pnshdee mostly that opposite decisions
are often near each other and it is impossibleetdract’ correctly knowledge about

decisions without losing some of them. This fadirdiely deserves our attention, because
it is impossible to build good and stable systefictv is based on unstable components. If
we consider NeuroSearch without some problematiasawe are able to see quite explicit

tendencies in its behavior.

The decisions are mostly based on very simple nmsima It seems quite logical that
NeuroSearch has different behavior when it stiitsquery and ends the query. Therefore
in the current version of NeuroSearch parameteps plays very significant role. Also
some parameters such &ent, currentVisited, Fromand toVisited should stop further
propagation of the query. Our analysis confirmeat this almost true. There are only few
points where it is not true. This might be causgdldw-qualitative training, because
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training algorithm might not have enough generatitmfind optimum solution. Positive
decisions about forwarding are mostly based onfagtors. These factors are number of
receiver’s neighborstqUnsearchedNeighborsr Neighbor$ and connectivity position of
this receiver compared to other receivgeighborsOrde). It seems that other information
is not so important for NeuroSearch and it is nyoged to improve accuracy of some
decisions.

The search strategy of NeuroSearch is based on wmencies. When NeuroSearch starts
the query it looks for the most connected neighlam sends the query to it. On the next
steps NeuroSearch forwards the query only to sewavat connected nodes. This causes
that in the middle phase of search process thaeguare located at most connected nodes
and this does not depend on the query’s initiaddter that NeuroSearch starts to send

query to nodes with high connectivity, but it awichost connected nodes. NeuroSearch
does not send the queries after 7 steps. This mibansNeuroSearch represents itself

mostly as some kind of BFS strategy.

Despite of that the SOM is quite powerful method flata analysis it requires some
attention to output results. Because it's finalfpenance highly depends on initial training
parameters and characteristics of input data. Threreesults that were obtained from the
SOM should be verified. That was done by produ@nd simulating RBA. RBA showed

the same performance level with NeuroSearch, thexafbtained results are reliable.
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6 Peer-to-Peer Simulation

Evaluation of new P2P protocols and other develgpmetdocols or comparison between
several existing protocols can be done either \ighp of live tests or using special
simulation software [Carson 1997]. Making of liests is problematic task because often
necessary hardware is not available or some nesaawknot exist anymore like Gnutella
network. Using simulation software is common wayé&sform such tasks. But simulation
software has some disadvantages in comparisonlmghests. We should define reliable
scenarios, which should reflect real behavior ahwating system that is always

problematic task. Errors on this stage can leatidastrous consequences.

There is a lot of simulation software available tre market. Some of them are
commercial products like QualNet [QualNet] and OANEPNET] thus they are not
available for our research. There are also freatriduted simulators like NS-2 [NS-2].
NS-2 is well documented software and can be easignded for new protocol. Other free
distributed software even if they are speciallyigiesd for P2P networking cannot be
easily extended to provide required functionality fexample supporting dynamical
changes in the network. It is because this softisamot well documented and some of
them originally were designed for other tasks sashsimulation of Distributed Hash
Tables (DHT) [Rowstron & Drushel 2001]. Thus we sbdo use NS-2 in our research,

which provides enough functionality to build P2Btpcols and network scenarios.

6.1 NS-2

This section is dedicated to review of charactedsbf NS-2 simulator. It also introduces
P2P extension for NS-2.

6.1.1 Concept Overview

Network Simulator NS-2 is discrete event based egmence simulator that was developed
at UC Berkeley. NS-2 was developed for Unix-basedrenments, but also can be run
under Windows OS using Cygwin [Cygwin]. NS-2 is ealib perform the following

networking simulations:
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* Mobile networking (different MAC layer protocols, ddilelP, different types of
routing agents: DSDV, AODV, TORA, DSR)

»  Satellite networking

* Local area networking

*  Wireless Sensor networking

* Transport layer protocols (UDP, TCP)

*  Multicast and unicast routing algorithms

*  Queue management mechanism (WFQ, RED, CBQ)

» Different radio propagation models (free space mat@dowing model, two-ray

ground reflection model)

There are a lot of extensions available for NS«&hsas network animator, different
topology generators and even distributed paralegsion of NS-2 [PDNS]. NS-2 was
originally developed as a part of REAL network siatar [REAL]. Currently NS-2 is a
part of the VINT [VINT] project [NS-2]. VINT is asgsting in protocols design, their
evaluation and comparison. NS-2 is written in C#d &Tcl. It uses two different
languages for different purposes. Naturally, ituiegs some system language (C++) for
implementing different algorithms and manipulatohafa. But for configuration scenarios
and fast tuning of the parameters we need sometdamguage (OTcl). OTcl works
significantly slower than C++ because OTcl is ipteted language, but code in OTcl can
be changed very quickly and interactively. Alsoréhare some ways to bind variables
between these languages and invoke proceduresdm@rianguage to another. There is
also a suggestion in [NS-2] to write first implertaion of new protocols entirely in OTcl
and only after testing series rewrite it in C++4MDTcl can be used for testing purposes.

Simple schema that describes work with NS-2 is shiowFigure 6.1.

OTcl script defines main steps for simulation sashinitialization of scheduler (start and
end of simulation, at which time nodes have to spadkets, link failure and so on),
topology of network, format of results, and iniizaition of agents. Of course all these
steps can be done from C++ code, but in this caseiWlose flexible possibilities to tune

necessary parameters and test quite big numbecenfasos. There is tight connection
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between C++ and OTcl. After running the simulatidrcl interpreter configures the

required C++ objects and invokes the necessaryadsth

(@ ) (2 )
OTcl
EXECUTION RESULTS
— —
SCRIPT OF
SIMULATION
(I
G ) J J

Figure 6.1 — Schema of work with NS-2

After completing the simulation there are severaysvavailable to investigate the results
using special tool called Network Animator (NAM) osing trace files. NAM is useful

tool for finding errors in the implementation ohaw developed protocol; also NAM can
be used for demonstrating purposes. But when stronlacenario has a lot of nodes it

becomes totally useless, because scenario caniibtdbeated entirely on a screen.

6.1.2 Discrete Event Scheduler

NS-2 as was mentioned in section 6.1.1 is evergdasnulator thus all simulation events
should be defined. For this purpdSehedulerbject is used. Figure 6.2 shows interaction

between network objects and scheduler.

NS-2 supports two different types of schedulinglt#tene and non-real-time. The non-
real-time scheduler is set as default. The reat-tsuheduler can be used with a real
network.

Each object that can interact wiScheduler for instance such aSimulator object, has

member functions to set simulation time of perfargisome actions during the simulation.
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Figure 6.2 — Discrete Event Scheduler

There are several implementations of such functions

at arguments — schedule execution of code at $petie

* at-now arguments — schedule execution of codewt no

» after n arguments — schedule execution of code afteconds
e run arguments — start scheduler

* halt — stop scheduler

6.1.3 Network Components

In this section we describe basic network companenth as node and link. They are

small bricks for building any network topology.

A node is compound object composed of a node afdjgct and classifiers. Structure of

each node is shown on figure 6.3.
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Figure 6.3 — Structure of node

Each node consists of two TclObjects: an addresssifler and a port classifier. These
classifiers distribute incoming packets to the ecrlagent or outgoing link. Each node has

the following components:

e an address

» alist of neighbors

* alist of agents

* anode type identifier

e arouting module

Naturally, all nodes should be connected. For timsposeslink objects are used. A
typical structure of the link is shown on figure46.Queue implements management
mechanisms for incoming packets. Delay models timk ldelay and bandwidth
characteristicsTTLChecker(in figure 6.4 depicted as TTL) decrements the TiEld in

each packet that it receives.
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Figure 6.4 — Structure of link

6.2 P2P simulation on NS-2

Nowadays there is no good P2P simulator with fellcf features for dynamic simulation.
Some of them don’t work in dynamic environment,epthhave unclear structure and it is
difficult to extend them. NS-2 is powerful tool Witfull set of capabilities to provide

qualitative simulation, but in author’'s knowleddpeite is no good implementation of P2P
simulator for NS-2. In this section stages of depeient of P2P simulator for NS-2 are

presented.

6.2.1 P2P Simulator Architecture

To develop Peer-to-Peer extension for NS-2 newdg&at was created and some modules
(simulator and node) were extended. Architecturéhefapplication is presented in figure
6.5.

The application consists of three major components:

* P2P agent
+ Extension of the node class

 Extension of the simulator class

68



[ P2P AGENT

SIMULATOR
TRAFFIQ
FLOW SUPPORTING
DYNAMIC
CHANGES
[ P2P AGENT - IN THE
NETWORK

Figure 6.5 — Architecture of the application

Each P2P agent is attached to corresponding nodleaes on application level of OSI

model. Each agent has receiving and sending proesd®ending procedure initializes

each packet and sends it to the environment. Rageprocedure is used for processing
received packets. This procedure determines the ofpeach packet and processes it
depending on its type. On each step this procedececases TTL parameter and if this
parameter is bigger than 0 it sends queries toeafjhbors excepting the previous sender
and nodes that already have been visited. Foraguiis procedure checks for the queried
resource; if current node has the queried resoitirsends back success reply using the
same traveling path and if it has not, it sendkbaormal” reply. Also this procedure

monitors statistics and saves it to files. In ddditto receiving and sending procedures,

each agent has the following procedures:

* Rndgenerate
* Getitem

* Shares

* Recneighbors
* Neighborhood
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ProcedurdRndgeneratés used for accessing OTcl random generator. Btve&etitemis
used to determine querying resource. Proce@ina&esis used for putting resources to
each nodeRecneighborss used to determine number of neighbors of eadeiver.
ProceduréNeighborhoods used to determine number of neighbors of ctimede.

Structure of the header of each packet has theWoil fields:

* idsrc- identifier of originator of query or reply

* rcvd_from- is identifier of neighbor that forwarded thiscgat to current node

* hops- array that consist of information about the paftkach packet

» target- the name of queried resource

e TTL- time-to-live field of each packet

* queryid- unique identifier of each packet

* packtype- shows the kind of packet that agent proces€es (query, 1 - success

reply, 2 - normal reply)

The P2P agent can be easily extended for addingcagabilities, such as supporting of
new protocols and redesigned version of old prdsoco

Classnodewas extended to store different simulation paramsefThis class can be easily
accessed by each agent. Also other modules sw&imakator can interact with clasede

It is difficult to pass information directly fromrmsulator module to each agent. Thus class
nodecan be used as universal buffer to pass informdieiween modules. The following

parameters were added to classle

* int sharing[100]— array containing shared instances of resources

* int lastneighbors[100] — array containing names of neighboring nodes of
disappearing node

e int status— parameter shows in which mode the processing r®(l - online, O -
offline)

* int cnvitycounter used for storing number of links for concretedeo
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* double time_of death time of disappearing of the node

* double time_of resurrectior- time of return of the node to the simulation
environment

» double total_time_of_life- total calculated time of the presence of theeniodthe
simulation environment

e int ready — parameter shows participation status of prongssiode in the
simulation at particular period of time

* int item- identifier of queried item

Class simulator was extended to support and provide dynamical gémnin P2P
environment. NS2 is event based simulator, in oti@ids all events such as appearance
and disappearance of nodes should be defined b&timnteng the simulation. So we needed
a support for dynamical changes in real time sitiuta Also this class was extended to
provide a support for starting preparation of altles and automatic sending of queries.
Extended classimulator can process the following key procedures invokednf OTcl

script:

* Nodesprepare

* Ready

e Startquery

* Rndgenerate

* Neighborkill

* Checkneighbors
e Kill

ProcedureNodesprepares used for initialization of parameters for eaubde tatus
ready, cnvitycountey. Procedure Ready is used to determine which netesld act as
initiators of queries at particular moment. Procgeditartqueryis used for generating start
queries from defined nodes. ProcedlRedgenerateis used for generating random
numbers using OTcl library. Proceduseighborkill is used for saving information about
neighbors of disappearing node. This informatiolh & used for future reappearing of the
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node. Procedur€heckneighborss used to find out information about status aghbors.
ProcedureKill is the main procedure for supporting dynamic clearig the P2P network.

This procedure defines the following actions:

* Monitoring status of all nodes
» Determining probability for staying, returning areinoving of nodes

* Processing and saving statistics to files

Probability of appearing and disappearing of eaotiendepends on connectivity of each
node. Recent studies [Ripeanu 2002] have shownith#&eer-to-Peer networks some
nodes have more stable behavior than others. Timdes usually are accommodated in
the central parts of the network and have more ections than others.

6.2.2 Usage of P2P Simulator for NS-2

To start the simulation OTcl script has to be uskdthis script the following key

commands are used:

* setn [$ns node]

e $ns duplex-link $n0 $n1 1Mb 10ms DropTail
» set pO [new Agent/Neurosearch]

« $ns attach-agent $n0 $p0

* $ns preparing_nodes

e $p0 shares 18

» $ns startquery

e $ns at 1000 "finish"

e $nsrun

Commandset n [$ns nodeis used to initialize each node. Commalughlex-linkis used to
provide duplex link between two nodes (for abovaregle between nodes nO and nl,
bandwidth is 1Mb, delay is 10ms and queue mechargdbrop Tail). Commandget pis
used for the initialization of each agent. Comm&nd attach-agent $n0 $p8 used to

attach p0 agent to node n0. Comm&nd preparing_nodeis used for the initialization of
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dynamic properties of each node. Comm&pd shares 18neans that node pO has
resource with id=18. Commarghs startqueryis used for automatic starting of queries.
Command$ns at 1000 “finish'defines the time of simulation (1000 sec). Comménsl

run starts the simulation.

The final results of simulation are saved to fileshe same directory where OTcl script is
stored. Filequery.txt contains simulation information related to spreddthe queries
through the network. Format of tlggery.txtfile is shown in table 6.1. Information about
successful replies is stored liaply.txt file. Format of thereply.txt file is shown in table
6.2. To decrease time of simulation it is possibleise only necessary short information
about location of the resources. For this purposeply.ixtfile is used. Format of the

f_reply.txtfile is shown in table 6.3.

Number o Number Query
Node’g|Packet'§ node’s |[Receiver’gof Initiator’'s
ID ID |lneighbors ID Receiver’:sTTL ID PATH
neighbors

Table 6.1 — Format of ‘query.txt’ file

Node’'s|Packet’'§Node’s PreV|,ou: ID of JIResource’s
hop’s |[resource ITL||TIME
ID ID status

ID location ID

Table 6.2 — Format of ‘reply.txt’ file

o 3l ID of
Node’giPacket’y TTL |resource{{PATH
ID ID .
location

Table 6.3 — Format of ‘f_reply.txt’ file

Node’s|Packet’'§Node’s PL%V'f)SU Resource’s;TIME
ID ID || status Ig ID

Table 6.4 — Format of ‘normal.txt’ file

If query did not find target resource at particutade, this node sends back reply to notify
about this. Information about such replies is starenormal.txtfile. Table 6.4 contains

format of normal.txt file. Meanings of most table fields of tables arguitively
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understandable. There are only several fields witm-clear meaning. Field PATH
contains list of nodes that packet has visitedrdyiis travel in the network. Field Node’s
status shows status of current node (offline/opliReld TIME stores time of occurring of

particular event, for example time of locating samsource at particular node.

List of queried resources are stored in fdegets.txt Statistics about the appearance and
disappearance of nodes are storekillrixt andresurect.txffiles correspondingly. There is

also possible to investigate results of simulatigth help of NAM.

6.2.3 RBA Extension

Having implemented basic P2P simulator on NS-2 ae easily extend it for a new P2P
algorithm. In our case we extended it to supporidAR®hich was described in chapter
number five. Results of RBA simulation are desdatibe chapter number seven. Usage of
RBA extension from user’s point of view is the samigh that was described in the
previous section. One difference is that now ugeds to define desired simulation mode.
This can be done by using commérs set_algorithm RBAf user does not need to use
RBA then he merely does not include this commandial script. Results of RBA
simulation can be shown on the screen or put totteut file.
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7 Open Problems

Despite the fact that NeuroSearch shows quite geoidrmance it has some problems like
every new algorithm. One problem is that it is idifft to explain behavior of
NeuroSearch. This problem has been solved in chaptaber five using SOM. Another
problem is that NeuroSearch is based on evolutjooamputing and thus it needs a lot of
training time to adjust weights of the MLP. Alsoettbehavior of NeuroSearch in
distributed and dynamic P2P environment is unknolire benefits of using NeuroSearch
in static environment is not so valuable, becaugewell known that in real life situations
P2P networks are characterized by high dynamieitg. rTherefore it is very important to
know about behavior of NeuroSearch in dynamic emwirent. In this chapter we mostly

pay attention to the above described problems.

7.1 NeuroSearch in Dynamic Environment

Since RBA that was described in chapter numberiéveased on decision mechanism of
NeuroSearch it is possible to evaluate behavioN@froSearch using RBA in dynamic

environment.

As a simulation environment P2P extension for N&&cribed in chapter number 6 was
used. For the test case we used topology, whitieisame with topology used in chapter
number 5 to test RBA in static P2P environment.sTtopology obeys power-law
distribution (2) wherey for Barabasi-Albert graph [Barabasi & Albert 1999]3. The

procedure, which provides dynamical changes toPtPB environment, has quite simple
structure. All nodes have two probabilities thag ased together to leave and join the
network. The first class of probabilities is defin@mndomly before starting the simulation.
Its purpose is to determine stability of each noflee second class of probabilities is
determined during the simulation according to nbdesnectivity with neighboring nodes
using formulas (33) and (34).

1

leaving probability = —— (33)
connectiviy
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C - 1
oining probability = 34
: ap v 26— connectiviy (34)

Constant 26 in formula (34) was selected to guasanbn-zero value in the dominator,
since maximum connectivity is 25. The purpose ef skcond class of probabilities is to
guarantee stability of highly-connected nodes atiogrto [Ripeanu 2002]. If some node
has to start its query and this node is in offimede, the node returns to the environment.
Also if all neighbors of some node left the netwirkn this node automatically leaves the
network. Since we need to evaluate results fronmadles we selected simulation time to
be equal to 100 seconds. During this time all namtes by one send their queries with

interval of 1 second.

O XK ‘j;;\’e & /
O I HAIIRAIN T
1 75 :@-_ _"""‘. '

o . "
® , 2NN 4 ®

Figure 7.1 Topology with dynamical changes
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To provide quite high dynamicity to the environmew¢ invoked procedure, which is
responsible for dynamical changes 4 times per sedeigure 7.1 illustrates the topology
after 20 seconds of simulation. In the figure blacklies denote nodes, which have stayed
in the environment all the time, red nodes areerly in offline mode and blue node
returned to the environment at this moment. Alsamfrthe figure one can see that in
general most of high-connected nodes show highlisgaéind most low-connected nodes

are characterized by high dynamicity as was defimedur scenario.

To make qualitative evaluation of performance RBAsveompared to BFS-2 and BFS-3
algorithms in static and dynamic environments. Neambf replies and amount of used

packets in static environment are shown in FiguPeand Figure 7.3 respectively.

20

—— RBA
— BFS-2
BFS-3 ||

REPLIES

50
QUERY

Figure 7.2 — Replies located by the algorithmsangtatic environment
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Figure 7.3 — Packets used by the algorithms irsthtic environment

Total number of located resources and used pagkeatstic environment can be found in
table 5.1. Analyzing Figure 7.2 one can see thatin&®BA locates more resources than
BFS-2 algorithm and in the same time significaridgs than BFS-3 algorithm. From
Figure 7.3 one can see that in general RBA useg mpackets than BFS-2 algorithm and
significantly less than BFS-3 algorithm. Mostly points where RBA located less
resources than BFS-2 algorithm, RBA used less patkan BFS-2 algorithm. In terms of
located resources this situation satisfies us lscd@&®BA is based on NeuroSearch’s
decision mechanism that is trained to locate ordlf bf available resources. In some
points RBA locates more resources than BFS-3 dlgarand in the same time uses less
packets. This means that if some resource is notmamn in the network, RBA and as

consequence NeuroSearch is able to find enoughnioss of this resource.
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Figure 7.4 — Dynamical changes in the network

Figure 7.4 illustrates dynamical changes in thevogk. In Figure 7.4 one can see the
amount of nodes in offline mode during the simolatiThis figure shows that simulation

conditions provide to the network rapid topologichinges during the simulation time.

Number of replies and amount of used packets irdfimamic environment are shown in
Figure 7.5 and Figure 7.6 respectively. Analyzingese figures one can see that
performance of the algorithms did not suffer so mutthe dynamic environment. The
algorithms are able to locate satisfying amountregources. The behavior of these
algorithms is quite similar to their behavior iretktatic environment. Still BFS-2 uses the
least amount of packets among the compared algwsitBut it finds in general like in the
static environment the least instances of availaé$®urces. BFS-3 finds more resources
but it uses significantly more packets than otHgorithms. Performance of RBA is also

very similar with its performance in the static gomment.
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Figure 7.6 - Packets used by the algorithms irdgh@mic environment
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Total number of located resources and used paakdtsee dynamic environment can be
found in table 7.1.

Algorithm Packets Replies
BFS-2 2515 528
BFS-3 10040 1245

RBA 4865 900

Table 7.1 — Comparison between algorithms in theadyic environment

Analyzing results that were obtained from the stamnvironment (Table 5.1) and the
dynamic environment (Table 7.1) one can see thaeimeral total performance of the
compared algorithms has not been changed so mungy 3till are able to find enough
resources in the dynamic environment. There arepossible causes, which can explain
the fact that all investigated algorithms founditdel bit fewer resources in dynamic
environment. The first cause is that some nodesfiline mode can contain queried
resources. Therefore these resources cannot ledoftam the network. The second cause
Is that some nodes in offline mode even if theyndbcontain queried resources might lie
on possible path of the query. This is more relabeBFS type of algorithm, because if this
happened in the beginning phase of the query gath definitely limits the further
propagation of the query. Naturally, one can seenfifable 7.1 that all algorithms used
less packets in the dynamic environment than insthgc environment. BFS-3 algorithm
got especially good benefit from decreasing conviggcbetween nodes and the size of the
environment. Disappearing of some nodes did nacaffo much on amount of located
resources and in the same time decreased numbesedf packets. This coheres with
theoretical background of BFS-strategies in highraxted environments such as power-

law environments: in more connected networks wesiagger number of packets.
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7.2 Optimization Problems

In this section we consider problems, which areteal to training of the MLP for resource
discovery problem. The main question that arises eewhether it is possible to provide
efficient training algorithm for decision mechanigm our case MLP) of NeuroSearch,
which at the same time will spend less time oming than Evolutionary Algorithm (EA).

One of possible solutions is to use some kind ofnBf#hod. But to apply BP we need to
know exact relationship between input informatiow aesired output information. Great
advantage of EA is that we do not need such raiships; in working process of EA it can

find desired relationships by itself in unsuperdiseanner.

One of possible ways to get desired input-outplaticaships is to use some deterministic
search strategy to get some heuristic equationseXxample these equations can be based
on success rate and amount of used packets. Twditioms should be satisfied to
guarantee the existence of solution. The first d¢@rdis that there must be one-for-one
kind of dependency between input and output paiins. second condition is that data must
be well separable, because we do not want a systegne number of neurons tends to

infinity.

It is easy to prove that it is impossible to satife first condition. Assume that we have
arbitrary power-law graph with some resource distion. Consider some simple situation
when we need to make decision about further foringrthat is based on some success

rate. Figure 7.7 illustrates simple sub graph withabove-described situation.

Figure 7.7 — Simple subgraph
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From figure 7.7 one can see that it is impossiblenke clear decision about further
forwarding that is based on some success rate fimae 1 to node 2. Because if target of
the query is one of B, C or D resources then Neeso$h should forward the query, but if
target is A resource then NeuroSearch should notaia the query further. Since all
available resources can be queried we come to aa@gial situation. Of course by
analyzing Figure 7.7 one can say that it is posdibimake decision that is based on some
probability. Since we can find three resourcesfémr queries we can forward the query
with probability 0.75. But it is true only for th@mple situation. In real life scenarios we
are dealing with much complex situations where asethuge graphs with large clustering
coefficient. This is leading us to situation wheie directions are almost equal to each
other. At the same time we need to guarantee gaugbrglization properties of the
algorithm. This also adds some additional compjetdatour situation because we need to
use some independent environment together withilegenvironment. In other words we
need some joint decisions that work quite wellathbenvironments. Therefore it is hard to

make clear decision that is based on probabiliguich complex environment.

Satisfying of the second condition that was desdrim the beginning of this section is
also increasing complexity of the training probledme of possible ways to do this is to
use some clustering method to investigate complefithe resource discovery problem.
This can be done for new algorithm in the same tlaywas described in chapter number

five.

Having read the above described problems one dak tiat it is impossible to implement

some BP based training algorithm for resource dsgoproblem. But it might not be so.

The main problem is how to collect and processistizal information from P2P

environment. During working on the thesis it hasrbavestigated that using BFS strategy
as basis for new algorithm is not so good approdchinvestigate this data from P2P
environment was collected using P2P simulator desdrin chapter number six. This data
contained statistics, which was based on dependémtyween input parameters of
NeuroSearch and some success rate. After thatabmeftware was written to process
collected information and based on this informatiesired outputs for the input data were
associated. Unfortunately after that data contaméat of controversial points, e.g. points
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that provide different output with the same inp#tB.attempts to process it or remove all
controversial points by changing them to their agervalue were unsuccessful. Average
value was quite the same for different input infation. It was impossible to distinguish
the data. In contrast to this, NeuroSearch (basdA) does not have such problems. It is
because during the training NeuroSearch autombtieald in implicitly manner utilizes
topological properties of the environment. EvertudlleuroSearch after selecting a
general strategy (it can be easily seen by anajyeiolution figure in [Vapa et al. 2004]
where performance of the algorithm becomes qudb i early generations) starts only to
refine this general strategy. On one hand it hépavoid problems with controversial
outputs, but on the other hand this has some hiddefs, because algorithm might

converge in a local minimum.

Thus we need some algorithm that can provide geadching strategy from first steps of
its work to collect data for BP training. In thexeatime this algorithm during the work can
collect data that does not have controversial goihis hard to propose right algorithm for
this case. One of possible solutions can be base8t@ner tree [Gilbert & Polak 1968]
algorithm. But nevertheless data obtained from #dgorithm should be checked for
controversial points and separation. If it is nosgible to avoid controversial points then
simple management mechanism is needed that canidprayeneral decisions for
controversial points. This task will be much easien providing the same approach for
BFS strategy. It is because we do not have a lotanfants for further searching of
resources. We merely have some general stratégiether words it is possible to say that
we can reduce dimension of the task. Separatiditiediof the data can be checked using

clustering analysis.

Another interesting problem that is related to mjation process is the definition of the
fitness function. Indeed due to it we can judgeudlperformance of the algorithm and in
the same time the algorithm uses it to adjust efsalvior. The fitness function is defined
with some quite big weight constant to ensure tigbrithm is able to find half of
resources. But this might lead us to some probldimis. because selection mechanism
works to choose only the best individuals. Thusnfiiaitial steps of optimization process
we are selecting individuals that are able to fimore resources. The easiest way to find
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resources is to use some kind of BFS strategy.eftwer the algorithm might stick in local
minimum from the beginning of the optimization, hase all selected individuals are quite
the same and obey BFS strategy. One possible @oligito use much smaller constant
instead of 50. This constant has to be selectadgaikto account average path length. It is
because using average path length we can reachhadfapf all nodes without any
problems and therefore this means that we are tabfend needed resource with high
probability. This should provide more fair compietit between found resources and used

packets. As a consequence our population will Gomtere heterogeneous individuals.

7.3 Discussion

As we have seen, behavior of RBA and as a consequehavior of NeuroSearch is quite
stable under dynamic conditions. This is quite ratbecause during the simulation the
topology does not loose its power-law propertiasother words migration of the nodes in

the core of the network has fewer ratios than endtiges.

Despite that the difference between BFS-2 algoriémth BFS-3 algorithm is only 1 step in

terms of hops, BFS-2 is unable to locate enougburess when its travel path goes
through low-connected nodes. Using of BFS-3 is algbgood idea, because we should
pay expensive price using disastrous amount ofgiackll these evidence show that using
BFS strategy cannot provide successful solutioth&problem. NeuroSearch algorithm
combines properties of BFS and DFS strategies. iflaikes NeuroSearch unique in the
sense of searching strategy. On one side this geeviast location of enough amount of
resources and on the other side avoids floodinglenes. Analyzing the simulation results
of all investigated algorithms from the dynamic dhd static environment we are able to
conclude that BFS strategy is very sensitive todize of the network. BFS-3 algorithm

used significantly less packets in the dynamic mmwnent where size of the P2P network
was a little less than in the static environmerit thé simulation time. RBA used

approximately the same amount of packets in botir@mment and therefore we are able
to say that it is not strongly sensitive to sizelw network as BFS-3 algorithm. Also we
can forecast that if size of the network is inchegua little then we will have significantly

more disastrous consequences from using BFS sjrateg
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Another problem that was described in this chapteelated to optimization. Despite of
the fact that using GA is good approach, whichvedldinding the solution, it is time
consuming process. The next step of my work is ragno provide supervised training
which will allow finding the solution much fasteln this chapter we paid attention to
problems that have to be solved to provide supervi® the training process.
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8 CONCLUSIONS

The thesis was aimed to solve optimization problem NeuroSearch in dynamic
environment. To do this we need answers to somstigns that lie on the way to solution
of the optimization problem in dynamic environmefitst we needed to know more about
decision mechanism of NeuroSearch algorithm. Thas wone in chapter number five
using the Self-Organizing Maps.

After extracting the rules that describe behavioNeuroSearch we produced RBA, which
is based on these rules. Benefits from RBA canele® $rom two positions. Knowing the
decision mechanism we are able to use its depermdetacproduce rules more efficiently.
In other words if we decide to implement some al#ve optimization mechanism, for
example those that was described in chapter nusgwem, we will be able to make some
needed corrections to the optimization. Also it veaiewn that RBA and NeuroSearch
algorithms are quite similar. Thus we investigabethavior of RBA and as consequence
behavior of NeuroSearch in dynamic environment. Tésults of the simulation have
shown that performance of the investigated algor#ttdid not suffer so much in dynamic
environment. More detailed information about reswf the simulation can be found in

chapter number seven.

Thus in the thesis we have patrtially solved preteny tasks that lie on the way to finding
good optimization method that can be used to tkenroSearch in dynamic environment.
Now obtained results are opening straight way ® dbal. Also the thesis leaved some
open issues for future work, because it is not iptessgo cover big amount of existing
problems and at the same time solve them. But apywaare now able to produce the
closest goals for the future work. First, in futwerks, we need to decide which algorithm
is most suitable choice to play role of supervibade in training process. One of possible
choices can be some modification of Steiner Trgerdhm. To do this some data mining
techniques like the SOM can be applied. Also soaschmanagement system is needed to
avoid controversial situation, which surely will peesented in decision mechanism. And
only after careful investigation and testing of #igorithm we will be able to judge about

feasibility of applying it to our problem.
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