
Matthieu Weber

Advertising Peer-to-Peer Networks
over the Internet

29th June 2006

Licentiate’s Thesis

UNIVERSITY OF JYVÄSKYLÄ 2006

ABSTRACT

Weber, Matthieu
Advertising Peer-to-Peer Networks over the Internet
Jyväskylä: University of Jyväskylä, 2006, 120 p.
(Jyväskylä Licentiate Theses in Computing
ISSN 1795-9713; 7)
ISBN 951-39-2329-0
Finnish summary

Most peer-to-peer networks nowadays are decentralized or even fully dis-
tributed, meaning that they do not require a central authority for proper op-
eration. Joining such networks is however often performed by using a central
directory of its members, thus breaking their decentralized characteristic. This
work proposes an advertisement system for peer-to-peer networks that does not
rely on a central service, nor requires any dedicated infrastructure to be setup,
using only already existing, fully distributed messaging networks, such as IRC
or Usenet. The efficiency of the new system is discussed, as well as its impact on
the networks it relies on.

Keywords: P2P, advertisements, IRC, Usenet, fully distributed

Author Matthieu Weber
Department of Mathematical Information Technology
University of Jyväskylä, Finland
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä
mweber@mit.jyu.fi

Supervisor Jarkko Vuori
Department of Mathematical Information Technology
University of Jyväskylä, Finland

Examiners Rolland Vida
Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics, Hun-
gary

Jarmo Siltanen
School of Information Technology
Jyväskylä University of Applied Sciences, Finland

mailto:mweber@mit.jyu.fi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Jarkko Vuori for his help. I would also like to
thank Mikko Vapa for his useful comments and for the discussion during which
the original idea for the thesis came up. Finally, I would like to thank my wife
Ritva for proofreading the text of the thesis and translating the summary into
Finnish.

Jyväskylä, 29th June 2006
Matthieu Weber

LIST OF FIGURES

FIGURE 1 Overlay network and underlying physical network 16
FIGURE 2 Various topologies of overlay networks for resource location . 17
FIGURE 3 Various topologies of overlay networks for data transport . . 18
FIGURE 4 Protocol stack . 27
FIGURE 5 DTD of the XML messages of the Information Protocol 28
FIGURE 6 Example of an advertisement message 28
FIGURE 7 Publishing binding information on the WWW 30
FIGURE 8 Flowchart of the state machine 47
FIGURE 9 Minimal IRC protocol sequences 51
FIGURE 10 Minimal NNTP sequences 53
FIGURE 11 Results of the IRC-based simulations 68
FIGURE 12 Results of the IRC-based simulations (continued) 69
FIGURE 13 Efficiency of the IRC-based simulations 71
FIGURE 14 Average clustering efficiency for 1000 to 10000 nodes (IRC) . . 72
FIGURE 15 Efficiency for increasing numbers of nodes (IRC) 73
FIGURE 16 Results of the Usenet-based simulations 75
FIGURE 17 Efficiency of the Usenet-based simulations 76
FIGURE 18 Average clustering efficiency for 1000 to 10000 nodes (Usenet) 77
FIGURE 19 Efficiency for increasing numbers of nodes (Usenet) 79
FIGURE 20 Efficiency with variable expiration time (Usenet) 80
FIGURE 21 Flowchart of the IRC-based simulator 86
FIGURE 22 Flowchart of the Usenet-based simulator 87
FIGURE 23 Example of the results of one simulation 91
FIGURE 24 IRC request messages sent by the node 93
FIGURE 25 IRC indication messages received by the node (connection) . . 94
FIGURE 26 IRC indication and confirmation messages (post-connection) . 94
FIGURE 27 NNTP request messages sent by the node 95
FIGURE 28 NNTP indication messages received by the node 96

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS

1 INTRODUCTION .. 11
1.1 Peer-to-Peer Networks .. 12

1.1.1 Historical Background ... 12
1.1.2 The P2P Revolution ... 14
1.1.3 A Matter of Perspective .. 15

1.2 Overlay Networks .. 15
1.3 Research Problem ... 18
1.4 Structure of the Thesis... 19

2 FINDING THE P2P NETWORK .. 21
2.1 The Real-World Example... 21
2.2 Existing Systems... 22

2.2.1 Centralized Indexes ... 22
2.2.2 Decentralized Indexes .. 24
2.2.3 Without an Index ... 24

2.3 Toward a Universal Solution.. 24
2.3.1 Usenet .. 25
2.3.2 IRC... 26
2.3.3 WWW Search Engines.. 26
2.3.4 Random Network Scanning .. 26

2.4 Protocol Architecture .. 27
2.4.1 Information Layer.. 27
2.4.2 Transport Layer ... 28

3 FORMAL TERMINOLOGY .. 33
3.1 Network .. 33
3.2 Nodes.. 34
3.3 Broadcast Channel .. 35

4 THE SIMULATOR ... 37
4.1 Broadcast Channels .. 37

4.1.1 IRC... 38
4.1.2 Usenet .. 39
4.1.3 Other Possible Broadcast Channels.................................. 40

4.2 Design of the Simulator... 40
4.2.1 Initialization.. 43
4.2.2 Simulation .. 43
4.2.3 Synthesis .. 45

4.3 The Simulator as a State Machine ... 46

5 TRAFFIC ESTIMATION ... 49
5.1 IRC Protocol... 50

5.1.1 Joining the Broadcast Channel .. 50
5.1.2 Advertising... 51
5.1.3 Leaving the Broadcast Channel 52

5.2 NNTP.. 52
5.2.1 Joining the Broadcast Channel .. 53
5.2.2 Retrieving an Advertisement .. 54
5.2.3 Sending an Advertisement ... 55
5.2.4 Leaving the Broadcast Channel 55

6 NODE BEHAVIORS .. 57
6.1 Common Behaviors .. 57

6.1.1 Neighbors Lists Exchange .. 57
6.1.2 Connection Requests.. 58
6.1.3 Incoming Connections ... 58
6.1.4 Joining the Broadcast Channel .. 58
6.1.5 Leaving the Broadcast Channel 60
6.1.6 Connection Target Selection .. 60

6.2 Specific Behaviors... 61
6.2.1 IRC as a Broadcast Channel .. 61
6.2.2 Usenet as a Broadcast Channel .. 62

7 EXPERIMENTAL RESULTS .. 63
7.1 Goals of the Simulations.. 63

7.1.1 Disjoint Networks.. 63
7.1.2 Usage of the Broadcast Channel 64

7.2 Parameters of the Simulation ... 65
7.3 Processing of the Results ... 66
7.4 IRC-based Simulation Results .. 67

7.4.1 Simulations of 1000 Nodes.. 67
7.4.2 Influence of the Number of Nodes................................... 71
7.4.3 Network Characterization .. 72

7.5 Usenet-based Simulation Results ... 74
7.5.1 Simulations of 1000 Nodes.. 74
7.5.2 Influence of the Number of Nodes................................... 77
7.5.3 Influence of the Expiration Time 78
7.5.4 Network Characterization .. 78

8 CONCLUSION ... 81

APPENDIX 1 SIMULATOR’S FLOWCHARTS ... 85

APPENDIX 2 GNUTELLA DISTRIBUTION RANDOM DEVIATE 88
2.1 Algorithm.. 88
2.2 Goodness of Fit .. 90

APPENDIX 3 SIMULATION RESULTS FILE EXAMPLE 91

APPENDIX 4 IRC AND NNTP PROTOCOL MESSAGES 92

APPENDIX 5 TRAFFIC PER NODE FOR INCREASING NUMBER OF
NODES ... 97

5.1 IRC-Based System .. 97
5.2 Usenet-Based System .. 102

GLOSSARY
REFERENCES
YHTEENVETO (FINNISH SUMMARY)

1 INTRODUCTION

Peer-to-peer networking has become extremely popular in the past few years,
in the information technology community as well as in the general public.
[Sch01] defines the term peer-to-peer as follows:

A distributed network architecture may be called a Peer-to-peer (P-to-P,
P2P, . . .) network, if the participants share a part of their own hard-
ware resources (processing power, storage capacity, network link capacity,
printers, . . .). These shared resources are necessary to provide the Service
and content offered by the network (e.g., file sharing or shared workspaces for
collaboration). They are accessible by other peers directly, without passing
intermediary entities. The participants of such a network are thus resource
(Service and content) and requesters (Servent-concept).

Current peer-to-peer systems are mostly (but not only) file sharing systems,
i.e., distributed software that allows users to download files stored on other users’
computers. Peer-to-peer systems are self-organized into networks, and any user
running the required software can join (and leave) those networks. Prior to join-
ing a network, it must however be located, meaning that it must somehow be
advertised. Most peer-to-peer systems are provided with their own solutions to
advertise their network, but these are specific to each network and, more impor-
tantly, they are centralized, thus breaking all the benefits brought by the decen-
tralized architecture of peer-to-peer systems. The goal of this thesis is to design a
generic, decentralized system for advertising peer-to-peer networks to the users
that want to join it.

12

1.1 Peer-to-Peer Networks

1.1.1 Historical Background

Until the late 1990s, sharing files over the Internet was done using client/server
systems. [Sch01] defines client/server as follows:

A Client/Server network is a distributed network which consist of one higher
performance system, the Server, and several mostly low performance sys-
tems, the Clients. The Server is the central registering unit as well as the
only provider of content and service. A Client only requests content or the
execution of services, without sharing any of its own resources.

The best-known examples of client/server systems are FTP and the WWW,
where servers hold the files, and the users connect to these servers with the ap-
propriate clients to retrieve them (and sometimes upload new files). Finding the
right file was not an exact science, and users had to rely on WWW and FTP search
engines, or even the knowledge of other users to locate the proper server. And
when the content of the files was copyrighted, it was a good idea not to openly
distribute the address of the server, in order not to attract too much attention.

Sharing a file in practice with a client/server is done as follows: the sender
of the file to be shared stores it onto a file server, and the recipient downloads
it from that server. Many different types of servers could be used for that pur-
pose, such as BBS (which existed before the Internet and were accessed using a
modem), systems based on IBM’s SMB protocol [Sha02], such as LAN Manager or
Samba [sam05], NFS [Sa03], and WWW or FTP servers connected to the Internet.
To some extent, one can also put e-mail into this category, where the file is tem-
porarily stored in the recipient’s mailbox on a server, and Usenet News [Sal99],
where the files are replicated over multiple servers for a limited amount of time.
All the above methods (except e-mail) allow to share files in a one-to-many fash-
ion, i.e., that the file can be retrieved by more than one recipient. E-mail is es-
sentially a one-to-one type of communication, but it is however possible to send
several copies of the file to several recipients at once.

Client/server was the main way to share files between two users, but not the
only one. A real P2P approach existed before the words “peer-to-peer” became
notorious, using IRC [OR93]: most IRC clients allow client-to-client connections
via a set of so called DCC (Direct Client-to-Client) [ZRM94] commands, and the
“DCC send” and “DCC get” commands are designed for respectively sending to
and receiving from a specified user. File sharing with DCC is strictly a one-to-one
type of communication.

As will be shown later, P2P is not only about file sharing, even if it is proba-
bly the first use coming to mind when P2P is mentioned: person-to-person mes-
saging is also an area in which P2P concepts have largely been used. For illustra-
tion purposes, here is a (non-exhaustive) list of non-P2P messaging systems:

13

• E-mail, which is clearly a client-server system, where the message is consid-
ered as a file and temporarily stored on a server, as explained above.

• Usenet, which resembles e-mail and uses the same approach.

• IRC, where the user connects, using a specific client, to a network of servers
(which can be, in some cases, reduced to one single server).

• Jabber [Jab05], which is a protocol for instant messaging based on the prin-
ciple of e-mail: all messages transit through servers, but if the recipient is
online when a message is sent, it is pushed toward it instead of being stored
on the server until the message is retrieved from there.

The common denominator behind all these systems (excepting DCC) is the
client/server architecture, which creates a hierarchy between the computers con-
nected to the Internet: servers are large and expensive machines, with a lot of stor-
age space and a lot of processing power, clients are small and not-too-expensive
computers. With the rise of the personal computer, the power of which has never
stopped increasing year after year, and especially since the spreading of afford-
able broadband home-Internet connections such as ADSL or Cable-TV networks
that allow anybody’s computer to be reachable from the Internet without inter-
ruption, the distinction between client and server disappears slowly. The logical
distinction still exists (“the client requests, the server replies”), but the discrimi-
nation based on the power of the machines, their availability and their network
connection has no more reason to be. Nowadays, every home user’s PC is pow-
erful enough to be a (reasonably sized) server. Even though the power of server
computers increases at the same rate as the power of personal computers, the lat-
ter have in the past few years reached the minimum performance level required
to make suitable file servers.

The notion of P2P communication arises from the above statement: if any
computer can become a server, then any computer can be at the same time client
and server. Based on this idea, Napster [Ora01] was released in fall of 1999. The
novelty in the Napster system was double:

• It made the search for the proper server much easier, by providing one sin-
gle directory of all the users and all the files shared by these users.

• It bypassed the need for a file server by allowing each user to share his
or her own files, turning the user’s workstation into a computer that is at
the same time a client (for retrieving files from other Napster users) and
a server (for sharing one’s own files with other Napster users). Instead of
being uploaded to the server and then downloaded, the files are copied
from user computer to user computer in a P2P fashion.

Since then, the proportion of P2P traffic on the Internet has rapidly and
constantly increased [LRW03, SW02].

14

1.1.2 The P2P Revolution

Besides giving a formal definition of P2P, [Sch01] also defines the term of servent,
which is the contraction of “server” and “client”. And this is exactly what a node
in a peer-to-peer network is: depending on the circumstances, it plays the role of
server or client (or both at the same time).

Although the concept of P2P has become well-known with the advent of
Napster, it is already quite old (and did not bear the name of P2P at that time).
The following systems are all at least several years older than Napster, and yet,
they are peer-to-peer systems:

• the Unix talk [man] command, which allows two users to establish a TCP
connection between each other using a specific client and exchange text
messages;

• IRC’s “DCC chat” command, that allows a peer-to-peer dialog; the mes-
sages exchanged by the users are therefore not sent through the IRC server,
as it is the case for normal message exchange;

• the above mentioned DCC file sharing features of IRC clients;

• the networks formed respectively by the Usenet, IRC and e-mail servers use
P2P communication between their nodes;

• IP networking is also a P2P system, in the sense that, in an IP network, all
the nodes are equal and exchange IP packets in a P2P fashion. The Internet,
at network level, is actually a P2P network by design.

ICQ [Rei01], released in 1996, has revolutionized the instant messaging the
same way Napster did in the field of file sharing. Here are the common features
of both systems:

• the presence of a global index of all the users (and for Napster, of all the files
shared by the users as well);

• the possibility for the users to query these indexes based on various meta-
information (keywords in the file name, type of file . . . in Napster; name,
nickname, location, addresses, phone numbers, hobbies . . . in ICQ);

• the possibility in ICQ to deliver a message to the recipient with only little
manipulation on his side, or the possibility in Napster to download a file
from someone’s computer with no need for that computer’s user to do any
manipulation whatsoever (simplicity of use).

These features were available for the first time all at once within one single
tool and they made these tools extremely popular. It is important to notice that in
Napster and ICQ, although the exchange of information (message or file) is done
in a P2P manner, the location of meta-information (the source of the file or the
destination of the message) is purely client-server. Other systems exist however,

15

where the location of the meta-information is also done in a P2P fashion (see
below).

The concepts that made the success of Napster and ICQ were reused, with
different kinds of implementations, in various software which attempted to clone
or improve the operations of the “original” tools.

Modern instant messaging systems such as AOL Instant Messenger (from
version 2.0) [aim04], Yahoo! Messenger [yah04], MSN Messenger [msn04] . . . al-
low peer-to-peer connections for person-to-person dialog. They must however
be considered as clones of ICQ, since they use the same concepts.

Post-Napster file sharing systems, however, are, at least for some of them,
trying to improve the way Napster works: Gnutella [Ora01], Freenet [fre] and
Overnet [ove02] (among many others) aim toward the suppression of the need
for an index (each node of the network actually stores a partial index), whereas
Kazaa [Sha03] and eDonkey attempt to combine the efficiency of an index with
the reliability of the absence of index, by using a distributed and partially repli-
cated index.

1.1.3 A Matter of Perspective

It was mentioned above that personal computers, which were until recently re-
stricted to the role of clients in the client/server architecture, have become pow-
erful enough to play the role of the servers. Besides allowing the creation of
modern P2P systems, it has also the side effect of blurring the limit between P2P
and non-P2P systems. Since any computer running a Web server, an FTP server,
Samba or NFS can share resources, a network composed of computers which are
all running these systems and which are actually sharing some of their resources
can be considered as a P2P network, according to the definition.

In some cases, the P2P-characteristic appears only at a given level of de-
scription of the system. For example, e-mail, Usenet and IRC have a client/server
architecture from the point of view of the user (the user uses a client software and
connects to a server), but these three systems use internally a P2P architecture: the
system relies on a network of servers, which communicate with each other in a
P2P fashion.

1.2 Overlay Networks

From an abstract point of view, the nodes of the P2P network form an overlay
network lying on the top of the Internet. As a classical, concrete network, the
Internet is composed of three categories of components:

• endpoint equipments, i.e., the workstations, servers, etc. that allow the
users to produce data which is sent or retrieved over the Internet,

• routing equipments, i.e., the routers, switches, proxies, wireless base sta-
tions, etc. that allow the data to travel across the network,

16

A

B
C

E

D

Physical network

Overlay network

Workstation Router

D

E A

B
C

D

FIGURE 1 Example of an overlay network and its underlying physical network

• links, i.e., copper wires, optic fiber and radio signals that connect the vari-
ous equipments.

These components all have a physical existence; the network they are part of is
therefore called the physical network.

In a typical P2P network, the only physical components are the worksta-
tions. They play at the same time the role of endpoint equipments and routing
equipments, whereas the links are virtual, and are most of the time TCP (some-
times UDP) sockets. A socket does not physically connect two computers like a
wire or even a radio signal does, but rather represents, from the point of view of
the operating systems on both computers, a connection between them; the phys-
ical location on the network of both ends of a socket is thus hidden from the
applications using them. This is illustrated in Figure 1: the workstations A and
B are on the same local, physical network, but they are not connected straight to
each other in the overlay network; if A and B want to exchange messages using
the overlay, these messages must go through the workstation C, which plays in
this case the role of a router between A and B within the overlay network. On the
opposite, workstations D and E have a direct connection in the overlay network,
but the map of the underlying physical network clearly shows that messages sent
from D to E will need to go through two routers in order to reach their destina-
tion.

The P2P network is thus composed only of workstations (called nodes)
which have established TCP connections between each other. The P2P network
is not able to transport data in itself; it relies for this purpose on the underlying
physical network that has been described above. The P2P network can there-
fore be described as a virtual network and as an overlay network of the Internet.
However, most of the P2P systems described above actually are composed of
two distinct overlay networks: one is used for signaling, which is, in most cases,
resource location, and the other for data transport. Both can go from simple
star-shaped networks to complex meshes and they do not necessarily have the

17

Nodes

Central directory

(a) Star-shaped network

Directory servers

Nodes

(b) Mesh network without routing

Nodes

(c) Mesh network with routing

FIGURE 2 Various topologies of overlay networks for resource location

same structure. Here are examples of overlay networks for resource location:

star-shaped network, where all the nodes connect to one central directory and
query it (see Figure 2(a)); this is clearly not a P2P structure. Napster, ICQ
and its clones use it.

mesh network without routing, where nodes are connected to at least one di-
rectory server (see Figure 2(b)); this is not a P2P structure. There is no need
for routing here, since the server is always only one hop away from the re-
quester node. eDonkey uses this structure, as well as, to some extent, the
network formed by e-mail or Jabber servers: the directory servers are in the
latter case the DNS servers.

mesh network with routing, where the nodes are connected to each other (see
Figure 2(c)); queries for resources are routed through the network until one

18

Nodes

Point−to−point data transfer

(a) Mesh network without routing

Source

Destination

Multi−hop
route

Nodes

(b) Mesh network with routing

FIGURE 3 Various topologies of overlay networks for data transport

node can reply to it. This structure is clearly P2P. Gnutella, Freenet and
Kazaa use this structure.

Here are examples of overlay networks used for transporting data (file
transfer in the case of file-sharing networks, or message transfer in the case of
instant messaging applications):

mesh network without routing, where the recipient of the data connects directly
to the sender of the data (see Figure 3(a)); this makes it a P2P structure. The
communication is essentially point-to-point, but since each node can be at
the same time sender and recipient for multiple data transfers, the resulting
network is a mesh. Napster, Gnutella, Kazaa, ICQ and its clones use this
structure.

mesh network with routing, like the previous one, but the same data can be
transferred across several nodes before reaching its destination (see Fig-
ure 3(b)); this structure is used in Freenet. The topology of the transport
networks used in eDonkey and BitTorrent can be assimilated to “mesh with
routing” since one can start to download a file from a node which is itself
in the process of downloading the same file from another node; the data is
actually routed from one node to the other across the network, in a multi-
cast manner, each upstream node in the multicast tree acting as a cache for
its downstream nodes. The networks formed by IRC, Usenet, Jabber and
e-mail servers have also “mesh with routing” structures.

1.3 Research Problem

When a user wants a workstation to join a given P2P network which does not
have any known-beforehand, central directory, the user must find at least one

19

other computer which is already part of that network and establish a TCP con-
nection with it. In short, one needs to find connection parameters (i.e., an IP
number and a TCP (or UDP) port number to which to connect).

Because currently working P2P systems provide mechanisms allowing new
nodes to join the network, most researchers concentrate on the problem of lo-
cating and retrieving resources from the network, and most, if not all, of them
consider that the acting nodes are already part of the network.

Some systems, like Napster or ICQ are using central indexes (sometimes
called “databases” or “directories”) referencing all current users of the system
(along with their connection parameters) in order to allow new users to locate
other peers and thus communicate with them. The mean of accessing the in-
dex (usually the same kind of connection parameters as mentioned above) is
known before using the system (e.g., from a configuration file distributed with
the software), and thus represents an easy way to join the network. Recent his-
tory [Ano02b] has proved that this central index is a potential point of failure, and
that bringing down the index will in time bring down the entire system: current
users are still members of the network, but they can’t rejoin it after leaving, and
no new user can join the network. In time, the network will disappear. Backup
servers are not always a solution in this case: if a company is running the servers
(like e.g., Napster) and is stopped by a decision of justice, the backups are usu-
ally stopped at the same time. Similarly, if only a limited set of backups exist, it is
possible to stop the Internet traffic to and from those servers to censor the whole
system (denial of service attacks).

In order to avoid this central point of failure, fully distributed P2P systems
like Gnutella have been developed. However, when a P2P system is designed in
such a way that there is no central control over the network, users must find a
way to join that network prior to being able to use the system. But finding an
entry point into the network becomes a problem when one doesn’t know where
to start looking for it.

This thesis proposes a solution for this problem, using existing decentral-
ized systems such as IRC or Usenet to efficiently distribute information about
existing nodes of a P2P network.

1.4 Structure of the Thesis

In this first chapter, we have introduced the history of peer-to-peer networks,
from which an informal definition is derived, then defined overlay networks and
finally defined the problem of finding an entry point into the P2P network one
wants to join, which is a necessary step before actually joining that network.

The second chapter presents solutions for finding the entry point, based on
examples from everyday life, then proposes one possible protocol that formalizes
the exchanges between computers in order to implement these solutions.

20

The third chapter defines a formal terminology for some of the concepts
which will be used in the rest of the thesis.

The fourth chapter describes the simulator that has been developed in order
to study the behavior of the protocol described in the second chapter, and the fifth
chapter describes in more details the rules that define the behavior of individual
nodes within the simulated network.

The sixth chapter presents the results of the simulations and the analysis of
these results, and the seventh chapter concludes the thesis.

2 FINDING THE P2P NETWORK

This chapter presents solutions to the problem of finding a way to join a P2P
network, as well as the software design of one possible solution. The protocol
described at the end of this chapter has not been implemented as is in the simu-
lator (see Chapter 4), but the simulator rather implements the behavior of virtual
nodes that would implement the aforementioned protocol. Moreover, the simu-
lator focuses only on the variants of the protocol that uses IRC and Usenet as a
communication layer (see below for details).

2.1 The Real-World Example

A hint of a solution to the problem described in Section 1.3 can be found in the
real world. When one person wants to know about a given service, there are
several ways to find information about that service, using well-known sources of
information, i.e., sources that are general knowledge. Each of those ways can be
transposed in the world of P2P systems:

• Ask friends if they know something about the service: this is equivalent to
already being member of a P2P network.

• Look into the phone book, and especially the yellow pages, into the local
newspaper or into specialized magazines for advertisements: this can be
compared to using an already existing, well-known system, like a search
engine (e.g., Google [Goo03a]), Usenet News or IRC.

22

• Knock randomly on people’s doors, until one find the required information:
this can be assimilated to random network scan.

The first example is not possible in a P2P network, since the user is not
yet a member of any P2P network, but the two other examples are worth being
investigated.

Finding a source of information is one more step that must be taken in order
to find the desired service, and which only displaces the problem. However, the
fact that the source of information is well-known, i.e., part of the general knowledge,
makes this step possible for anybody.

2.2 Existing Systems

Existing systems already try to address the problem of entering the network. Sev-
eral solutions have been found, that can be divided into three categories, depend-
ing on the way their resource index is organized [AW03]:

• Systems with centralized indexes, where a list of potential entry points are
available at one source only. The address of the index is known by the user
or hard-coded into the software by the software publisher. The latter is often
true with commercial systems.

• Systems with decentralized indexes, where the lists of entry points are scat-
tered over several sources, but where the location of those sources is to be
found in well-known places. The address of the sources is known by the
user, either directly or as e.g., the result of a query sent to a Web search
engine, using pertinent keywords.

• Systems with no index, where the lists of entry points are directly available
in well-known places.

2.2.1 Centralized Indexes

The first P2P systems to be released were (or still are) using centralized indexes.
A centralized index has several advantages:

• simple and straightforward to design,

• easy to locate: only one address is necessary, which can be hard-coded into
the software which is going to use that index,

• easy to control: all the data is in one place, there is no risk of inconsistencies
like there can be in distributed or replicated indexes.

23

The centralized index concept also has drawbacks:

• if the system grows too large, the available processing power and/or net-
work bandwidth available for the users to use the index might not be
enough,

• as mentioned before, a centralized index is a favorite target for attacks
aimed at bringing the whole system down. These attacks can be technical,
such as Denial of Service (DoS) attacks, where a large number of comput-
ers, controlled by the attacker, attempt to saturate the server hosting the
index with incomplete connection requests, in order to prevent it to reply
to normal queries, or legal attacks, aimed at forcing the entity running the
index to cease its activity, thus stopping the index to work.

Napster, Kazaa and most Instant Messaging services, such as ICQ, Yahoo!
Messenger and MSN Messenger all obviously belong to this category: their cen-
tralized index are maintained by the companies developing the software, and the
address of the index is hard-coded into the source code of the software. In here,
the well-known source of information is the company itself, since the information
about the index is delivered to the user at the same time as the user acquires the
software. The fact that the address of the index is hard-coded into the software
also participates to the business model of the companies: it makes the software
easy to use, therefore attractive to the end-user, and it keeps the user captive since
there is no way to use an alternative index.

eDonkey is another commercial software, which differs from the previous
ones in using a decentralized index (i.e., several independent indexes, called
servers, run by independent entities), but distributes a list of of servers along
with their software. In this case like in the above ones, the company provid-
ing the software is the well-known source of information. The user of eDonkey
has, however, and as opposed to the above commercial systems, the possibility
to add more servers to its list of known server, and to completely disregard the
list provided by the company. Besides, the servers know each other’s existence,
and can provide the software with an up-to-date list of active servers. Moreover,
several clones of the eDonkey client, implementing the same protocol, have been
developed (such as eMule [emu04] and MLdonkey [mld04]), which allow users
to join the eDonkey network without any need for the original eDonkey software
publisher.

Gnutella at some point of its existence also fell into the current category,
since the early Gnutella cache [Ora01, p. 113–115] was a centralized index; the
address of the index’s host server was mentioned in various documents available
on the Web (whose search engines were the well-known sources of information).
Even though the index was here centralized, the way to get to know the index
was not centralized.

24

2.2.2 Decentralized Indexes

More recent configurations of Gnutella [Däm03] belong to the second category:
there are several independent lists of peers available on the World Wide Web (so
if one list disappears, there are still several others), but finding those lists depends
on a Web search engine. There are however several major and independent search
engines available (so this is not a potential point of failure either) representing the
well-known sources of information. The risk of global failure is smaller than in
the previous case thanks to this redundancy. However, the use of those lists still
requires human intervention, because of the need for manipulating a Web search
engine (Section 2.3.3 discusses the automatization of that task).

2.2.3 Without an Index

JXTA [Gon01], the Universal Ring [CDKR02], GIrcCache [Ano02a] are in the
third category: the needed information is available from numerous well-known
sources (RendezVous servers [Gon01] of JXTA, each node of the Universal Ring,
the local IRC server in GIrcCache). Once one source is known, the other ones
can easily be found through the first one. As with decentralized indexes, the risk
of failure is low, thanks to the high redundancy of the well-known sources of
information.

JXTA is however only dodging the issue: all JXTA users are members of
one peer group called the World Group, and joining this group in order to know
other RendezVous servers requires to know a first RendezVous server, hosted by
Sun Microsystems, which is hard-coded in the software distribution of JXTA. Be-
cause of that, as long as JXTA is not widely used (i.e., the address of the closest
RendezVous server is a well-known piece of information for everybody), it will
actually fall into the category of centralized systems. In the same way, the Uni-
versal Ring expects the system to be widely distributed, and that each user uses
a well-known node as entry point.

GIrcCache1, on the contrary, is fully distributed: it relies on IRC, which is a
10 years old, well-established and fully distributed chat system. Accessing GIr-
cCache and finding Gnutella nodes only requires to know the local IRC server,
which is assumed to be a well-known piece of information (as are the Internet
addresses of the local mail server and Domain Name server). GIrcCache, how-
ever, allows finding only Gnutella nodes.

2.3 Toward a Universal Solution

The existing solutions presented above are designed for being used within a
specific system (except the Universal Ring), and often assume that the system
is already sufficiently widely used in order for the source of information to be

1GIrcCache is not documented, but is implemented in Gnucleus [Ano02a]

25

well known. The latter is however not true, and, although the Universal Ring is
one possible solution for the future, none of those systems is nowadays widely
spread.

A transitional solution needs to be set up so that one (or maybe several)
system can in future become as common as the e-mail, the Web, Usenet or IRC
are nowadays. This transitional system should be widely available as soon as
possible, without the need of heavy infrastructure deployment, in order to make
it attractive to the peer-to-peer software developers. One easy way to achieve this
is to rely on already existing infrastructures, which are already part of the general
knowledge of the Internet. Usenet, IRC, and, to some extent, the Web can be used
that way.

2.3.1 Usenet

Usenet, sometimes called Internet News, is a distributed, completely decentral-
ized system that broadcasts messages across a large set of servers. As Usenet
is as old as the Internet itself, it is considered as one of the basic services of the
Internet, and should be available from any Internet Service Provider. However,
given the absence of central administration in Usenet, getting an accurate picture
of how many Usenet servers are available in the world is difficult. Some Web
sites propose lists of public servers [Ano03a, Ano03b], but there is no way to in-
fer from those data the availability of Usenet servers for everybody. It is however
assumed that most of the people having an access to the Internet are also given
an access to a Usenet server by their Internet Service Provider.

Messages in Usenet are sorted by topic into newsgroups, usually one news-
group for one topic. Some groups, however, have special roles, like informing
Usenet server administrators about newly created groups and groups that must
be destroyed, discussing about whether a group should be created or destroyed,
and test groups, where users can verify that their news reading software works
properly (especially for posting messages to a server). The content of the test
groups is also propagated among servers, in order to check if propagation works
properly, but users do not usually read these groups.

It would thus be possible to use those test groups to post adequately format-
ted messages describing a peer-to-peer network and a node which is a member
of that network, in order to allow other users to find an entry point into that
network (the format of that message will be discussed later).

An alternative to using test groups for that purpose would be to create a
dedicated group in the alt.* hierarchy2. This solution might be cleaner, but if alt.*
groups can be easily created, they can also easily be destroyed (actually ignored
by administrators), thus making the whole system vulnerable to attacks.

2Creating a new group is usually a long process, involving discussions about the usefulness of
the new group and ending with a vote from the persons who took an interest in the discussion.
The alt.* hierarchy is different in this respect since anyone is allowed to create a new group into
it.

26

2.3.2 IRC

IRC (Internet Relayed Chat) is a real-time chat system based on a network of
servers which are exchanging messages in a peer-to-peer way, without any cen-
tral control. Users connect to their favorite server to join the system. They are
then uniquely identified by a nickname, and can send messages either to another
user or to a channel. Channels are virtual rooms, which the users can enter or
leave. Every message sent to a channel is forwarded to all members of that chan-
nel; it can thus be assimilated to a multicast group. Any user can create a new
channel, simply by “joining” a non-existing one.

It is thus possible for some nodes of a peer-to-peer network to connect to
IRC in order to find other nodes to which they could connect. This is already im-
plemented in GIrcCache for the Gnutella network, but we propose here to extend
this to any network and to design a lightweight protocol for that purpose.

2.3.3 WWW Search Engines

GWebCache [Däm03] relies partly on the WWW search engines, which represent
the well-known sources of information for finding GWebCache servers. A search
engine is in essence a centralized system, which is subject to failure (in this case,
a failure can be an attack, but also the disappearance of the company running the
search engine or censorship). As there are several search engines available on the
Web, this problem can be somewhat minimized, but not completely forgotten.

However, a search engine can be relied on in case none of the above-
mentioned systems is available or known by the user.

2.3.4 Random Network Scanning

If none of the above solutions is available for a given user, the last resort possi-
bility would be to try to connect to random IP addresses, until a peer is found.
This solution should however be avoided, since this behavior can be assimilated
to network scanning, which is considered as an attack by some network admin-
istrators.

Actual random scanning might prove inefficient; one optimization would
be to first scan the IP network to which the scanner belongs (a list of these IP
addresses can be computed from the scanner’s IP address and network mask
address). If no suitable node is found this way, the scanner can try random or
systematic3 scan in A-class IP networks; most of these have been attributed to
large organizations, such as universities and Internet Service Providers, in the
early day of the Internet.

3The decision to choose between random and systematic depends on the distribution of at-
tributed IP addresses within the address class, and is out of the scope of this document, as well as
is the algorithm used to implement the systematic scan.

27

Information Layer

Transport Layer

ScanWWWUsenetIRC

TCP/IP

FIGURE 4 Protocol stack

2.4 Protocol Architecture

If we consider that IRC, Usenet, a WWW search engine and random network
scan are several data communication media, we can design a two-layer system
(Figure 4) composed of an Information Layer and a Transport Layer, running on
the top of the various media which would allow a peer-to-peer application to use
all of them in a transparent way.

We also describe basic considerations on the behaviors that must be ob-
served by the peers when using those media in order not to overload them: IRC
and Usenet are not designed for the purposes described here, and a massive use
of these systems by peer-to-peer networks may rapidly overload them. The great-
est care must thus be taken when implementing this system to minimize the risk
of provoking a denial of service in these systems.

2.4.1 Information Layer

In the following, we call binding information any kind of information that is suf-
ficient for establishing a connection with the node. In the case of TCP/IP, the
IP address of the peer and the TCP port number to connect to form together the
binding information. In the case of other protocols, the type of information that
is needed may be different.

When the node wants to join a network, its own binding information is sent
over the Internet through the Information Layer. The Information Protocol is
XML based and has only one primitive: the ad primitive. The Document Type
Definition of the messages is shown in Figure 5.

The messages are designed so that almost any kind of information can be
sent. The only mandatory information is the name of the network which iden-
tifies the network among all peer-to-peer overlay networks (and which must be
decided by the designers of the network) and the type of binding information
contained in the message (in the case of the Internet, the type could be TCP/IP

28

<!ELEMENT ad (network,bind-data)>
<!ELEMENT network ANY>
<!ATTLIST network

name #CDATA REQUIRED >
<!ELEMENT bind-data ANY>
<!ATTLIST bind-data

type #CDATA REQUIRED >

FIGURE 5 The Document Type Definition of the XML messages of the Information Pro-
tocol

<?xml version="1.0"?>
<!DOCTYPE ad SYSTEM "p2padvertisements.dtd">
<ad>

<network name="abc"/>
<bind-data type="TCP/IP">

<ip>192.168.123.123</ip>
<port>12345</port>

</bind-data>
</ad>

FIGURE 6 Example of an advertisement message for a P2P network named abc and
using TCP/IP binding information

and the bind-data element could contain an ip element and a port element. In the
case of Bluetooth or IrDA protocols, this information might be completely differ-
ent). Figure 6 shows an example of such a message.

ad messages are then given to the Transport Layer, which will multicast
them to any peer which is willing to receive them, according to the media which
are available to the Transport Layer.

ad messages can also be received from the Transport Layer. The Information
Layer must forward to the upper layer only information relevant to the desired
network. All other information is dropped.

2.4.2 Transport Layer

The Transport Layer will send the messages it receives from the Information
Layer over all the media it can access: Usenet, IRC, Web search engine and ran-
dom network scanning. The messages will be fitted into a suitable form, depend-
ing on the media.

Media are assigned priorities: the medium having the highest priority is
used first. If it does not yield any result after a given timeout, the next medium
in the priority list is tried (this does not necessarily mean that one gives up the
previous one), and so on until there is no medium left. If no result has been
reached at this point, joining the network doesn’t fail, but is considered as being
delayed. Once all media have been given up, the network connection fails. It is
however possible to remain connected to a given media for days (e.g., IRC) or

29

to poll information at regular intervals over a long period of time (Usenet, Web
search engine). Joining a network might thus take a lot of time, but failure will
occur only if none of the media is available or if the user interrupts the procedure.

IRC Medium

Before sending a message using the IRC medium, a TCP/IP connection must
be made to an IRC server. The address and port number for establishing that
connection is considered as common knowledge and is given by the user who
installs the peer-to-peer software. Once the connection has been established, the
#p2padvertisement channel will be joined and only one message will be sent to the
channel, providing the users already connected to the channel with the binding
information of the current node.

All messages sent by the other users over that channel will be forwarded to
the Information Layer.

The use of IRC medium gives a naturally limited lifetime to the advertised
information: messages will only be visible to the nodes already connected to the
channel at the time of the sending of the message. There is no need to re-send the
message: when a newcomer arrives, it sends its own information, and one can
react on it (i.e., try to establish a connection with it) if it is found suitable.

Usenet Medium

Before sending a message using the Usenet medium, a TCP connection must be
made to an Usenet server. As in the IRC medium, the address and port num-
ber for establishing that connection is considered as common knowledge. Once
the connection has been established, the alt.test newsgroup will be requested and
some message headers will be read (this group usually has a lot of traffic, so read-
ing the messages are limited to the last N ones, N being given as a configuration
parameter by the user, typically 100 to 500 messages). Only the messages whose
Subject field is set to “p2padvertisement” will be read (i.e., their bodies will be
requested from the server). The bodies of those messages are then passed up to
the Information Layer. If no suitable information is found, the message coming
from the upper layer is posted to the newsgroup.

Usenet servers associate each message with an index number which is grow-
ing monotonically. It is advisable to cache the last index number which has been
requested, in order to avoid reading the same messages again during the next
poll.

The use of the Usenet medium gives a naturally limited lifetime to the mes-
sages: in order to save disk space, Usenet servers delete older messages. The
usual lifetime of a message is between a day and a month, depending on the
newsgroup and on the server.

30

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<title>p2padvertisement</title>
</head>
<body>

<p>binding-data.xml</p>
</body>

</html>

FIGURE 7 Example of an HTML document publishing binding information on the
WWW

Web Search Engine

If IRC and Usenet are not available at a given location (because the local network
administrator is blocking the necessary TCP ports with a firewall), the WWW
might still be reachable, even if its use as a broadcast medium is more complex.

Compared to the two previous media, the use of a Web search engine re-
quires an additional Web server for publishing the binding information. More-
over, different web search engines have different user interfaces, which require
specific programming interfaces.

However, the use of a Web search engine as a diffusion medium differs lit-
tle in principle from the Usenet medium. Before sending a message using this
medium, a TCP/IP connection must be made to the Web server hosting the search
engine. The address and port number for establishing that connection is consid-
ered as common knowledge and is given by the developer who made the pro-
gramming interface. Once the connection has been established, a request can be
sent using HTTP protocol and the resulting HTML page can be parsed in order
to find URLs of Web pages containing binding information. Each of those pages
must then be parsed to get the necessary information, which can finally be passed
to the upper layer.

Advertising the binding information is however less straightforward than
in the previous cases: it must be published on the Web, in a form that is easily
exploitable by search engines, and the Web document must be registered into the
search engine. Simply publishing an Information Protocol message might not
work with all search engines, since the message is in XML, not HTML. However,
the registration needs to be done only once for a node.

The proposed way to publish the binding information on the Web is shown
in Figure 7. The actual binding data is located in the binding-data.xml file,
to which the HTML document links. The title element of the HTML document
is mandatory and used as a filter criterion for selecting the results given by the
search engine. Maintaining the information up-to-date consists in maintaining
the content of the binding-data.xml file up-to-date.

31

One can notice that the use of Web search engine medium does not give a
natural lifetime to the binding information. This information must be kept up-to-
date, by means which are out of the scope of this document.

Moreover, compared to the previous media the use of a Web search engine
as a diffusion medium for binding information is thought not to be a good choice
for automated network binding, for the following reasons:

• There is no standard programming interface between search engines (the
layout of the result page of search engine A is different from the one of
search engine B).

• There is no standard programming interface within one search engine (the
layout of the result page can change at any time without warning).

• The request might yield unwanted results, which makes the parsing of the
result page less efficient.

However, some search engines might provide an automaton-friendly search
interfaces (like the SOAP [ea00] interface of Google [Goo03b]). Some others might
be developed in the future.

Random Network Scan

If all previous media fail to return the desired information, or if the user who in-
stalls the software is not able to give any of the needed information (IRC/Usenet
server IP address, Web search engine interface), the last resort solution is to con-
nect to some random or pseudo-random IP addresses in order to find a peer to
which to connect.

This medium is not a diffusion medium in the sense that it advertises the
node’s information to other nodes, but it is nonetheless potentially able to return
binding information to the upper layer.

Heuristic methods that can be applied are, among others:

• Trying IP addresses of nodes to which the current node was connected ear-
lier (this requires for the node to keep a history of its neighbors).

• Trying IP addresses of the same sub-network than the current node.

• Trying random IP addresses inside the network of great domestic or foreign
institutions (e.g., universities). A list of these institutions is asked from the
user.

• Trying random A class IP addresses from large Internet Service Providers
(these addresses or networks are asked from the user).

None of these methods might yield satisfactory results, and they can even
be considered as illegal in some countries. The use of this medium should be
disabled by default, and enabled only on the user’s request.

32

3 FORMAL TERMINOLOGY

A formal terminology is necessary in order to clarify explanations; the one used
in this work is mainly based on the well-accepted vocabulary of graph the-
ory [DM03].

3.1 Network

The system is composed of one broadcast channel B, a set of nodes V , a network G
and a knowledge network K.

G is in this work defined as a couple composed of a set of nodes N ⊂ V and
a set of undirected connections C; therefore G = (N, C). Two nodes N0 and N1
are said to be connected to each other if ∃c ∈ C that links N0 and N1; c is noted
c : N0 ↔ N1. G is such that all its nodes are connected to at least one other node.

The nodes have the following properties:

• Every node knows the existence of the broadcast channel.

• The nodes that have at least one connection to another node form the net-
work. This differs from the traditional definition of a network, which can
contain also nodes that are not connected to any other node. In this work,
we consider that a node which is not connected to at least one other node
is not a part of the network. However, it is permitted to add nodes from V
to N, on the condition that corresponding connections are added to C. In
other words, that means that any node which is added to the network must
also be connected to the network.

34

• A path is a finite, ordered set of nodes P = {Ni} ,P ⊂ N where 0 ≤ i ≤
n, n ∈ N, each node Ni is connected to node Ni−1 if i ≥ 1 and to node Ni+1
if i ≤ n− 1. P is then said to exist between node N0 and node Nn.

• The network is said to be partitioned into two disjoint connected components
C1 ⊂ G and C2 ⊂ G if ∀ (N1, N2) ∈ (C1, C2), there exists no path between N1
and N2.

• A node Ni connected to node N0 is called a neighbor of N0. The set of neigh-
bors of N0 is noted CN0 .

• The number of neighbors of N0 is called the degree of N0. We note d(Ni) the
degree of node Ni for Ni ∈ V . Moreover, d(Ni) =

∣∣CN0

∣∣.
• The maximum number of neighbors that N0 is ever allowed to hold is called

the maximum degree of N0. We note dmax(Ni) the maximum degree of node
Ni for Ni ∈ V . The ratio d(Ni)/dmax(Ni) is sometimes referred to as the
filling of node Ni.

K is defined as a a couple composed of V and a set of directed knowledge
relations K; therefore K = (V , K). The node N0 is said to know the node N1 if
∃k ∈ K that relates unidirectionally N0 to N1; k is noted k : N0 → N1.

• A node Ni that N0 knows about is called a known node. The set of nodes that
N0 knows about is noted KN0 .

• Each node N0 defines a threshold for the number of nodes it wants to know
about at a time; this threshold is noted

∣∣KN0

∣∣
max. It is in practice defined as

a percentage of dmax(N0) and called minimum known nodes before leaving (see
Section 4.2).

3.2 Nodes

When the behavior of a given node is described, the following terminology will
be used:

• The network is called the network or G.

• Interactions between nodes (either direct or through the broadcast channel)
allow the nodes to discover the existence of other nodes; in other words,
nodes get to know other nodes. This is formally defined by the addition of
a knowledge relation to K.

• The node from the point of view of which a behavior is being described is
from now on called the node or N0. A node Ni ∈ V − (CN0 ∪ {N0}), i.e., a
node that is neither N0 nor a neighbor of N0 is called the other node. If Ni is
not known by N0, i.e., Ni 6∈ KN0 , it is called an unknown node.

35

3.3 Broadcast Channel

The following terminology will be used to describe the properties of the broadcast
channel B:

• Connections to B are represented by a network B composed of V ∪ B and
a set of connections J; therefore B = (V ∪ B, J). If N0 is connected to the
broadcast channel, then ∃s ∈ J that links N0 to B.

• Joining the broadcast channel is synonym to connecting to the broadcast chan-
nel, in other terms one adds one element to J which represents a connection
between B and N0.

• Leaving the broadcast channel is synonym to disconnecting from the broadcast
channel, on other terms one removes the element of J which represents the
connection between B and N0.

• The broadcast channel has a maximum capacity; this means that |J| cannot
be higher than a given value |J|max: we always have |J| ≤ |J|max.

36

4 THE SIMULATOR

In order to study the formation of the network according to the node behaviors
described in Chapter 6, a simulator has been developed. It is not a network simu-
lator in the usual acceptance of the term, i.e., it does not simulate as accurately as
possible a network topology and network protocols. The use of such a network
simulator (like e.g., NS-2 [FV03]) would have required to simulate a real network
topology, making assumptions on the links’ capacities and latencies, define the
presence (or absence) of routers or switches and their characteristics, network
protocols between the nodes (the use of IP and TCP is obvious, but lower proto-
cols layers can have a strong influence on the performance of TCP/IP), to name
only some of the decisions that should have been taken. These decisions would
have been arbitrary, and would probably have influenced the results of the sim-
ulation. Besides, it would also have been necessary to implement an actual peer-
to-peer protocol to be used in the simulation, which would have been outside of
the goal of this work.

Two separate simulators have been implemented, one using IRC as the
broadcast channel, and another one using Usenet for that purpose. The actual
implementations have most of the code in common, and only the broadcast
channel-specific functions are different.

4.1 Broadcast Channels

The replacement of the central index, used in many systems for the nodes to
be able to join the network, requires a broadcast channel, shared both by the

38

nodes which are members of the network and by the nodes which try to join the
network. This channel is the only possible way a node outside the network can
find information about the nodes inside, and the nodes inside can advertise their
presence to the outsiders.

The broadcast channel is, by definition, a communication channel that is
available to all nodes in a network. Any message sent to the broadcast channel
will be received by all the nodes in the network. Wireless network devices such
as WLAN [IEE99] or Bluetooth [IEE02] benefit of an implicit broadcast channel:
any node can broadcast on the air information to any other node which is within
range of its radio transmitter. This feature is used by the Mobile Chedar mid-
dleware [KVW+04], where the mobile nodes use Bluetooth’s Service Discovery
Protocol to locate the other nodes that are within range of their transceiver.

IP networks also have a broadcast feature. It is however rarely used, since,
given the number of nodes of the Internet, it would produce enormous amounts
of traffic; that is why broadcast messages are filtered out by gateways [Ste94,
page 171]. Besides, whereas in radio networks nodes within range are likely to be
interested in establishing communication, computers located on the same local
network are not necessarily interested in joining a peer-to-peer network. For that
reason, the broadcast channel must have the following properties:

• it must be like a multicast channel, rather than a broadcast channel, i.e., a
transmission channel that is shared only by the nodes which have explicitly
registered to it; this limits the sending of the “broadcast” information only
to the nodes which are actually interested in that information.

• its existence and the information that one must know in order to access it
must already be known to the node which wishes to join it.

Following the aforementioned guidelines, two different existing infrastruc-
tures are considered while selecting a broadcast channel: IRC and Usenet.

Moreover, even though the name “broadcast channel” is not appropriate,
it will be used in this work, because of the connotation of the word “broadcast”
which conveys the notion of a medium shared by all users of the system (even
though, in practice, only the nodes that connect to IRC or to Usenet will receive
the information).

4.1.1 IRC

IRC (for Internet Relayed Chat) is a worldwide distributed system that allows
users to exchange instant text-mode messages. IRC relies on a network of servers
linked together using TCP connections in a peer-to-peer manner, which route
messages from the source user to the destination user. The topology of the net-
work of IRC servers, a tree, is carefully planned by the community of the IRC
admins (i.e., the administrators of IRC servers). Each user is identified by a nick-
name, which is an identifier, unique within the system. Messages are sent either
to specific users (the user’s nickname being the destination address) or to groups

39

of users called channels. A channel is similar to an IP multicast [Ste94, section
12.4] address: users register to the channel at any time, and the messages sent to
the channel are forwarded to all the registered users. Channels are identified by
a name, which is unique within the system. The nickname namespace is disjoint
from the channel namespace.

Once a TCP connection has been established with an IRC server, the follow-
ing operations are available:

nick: identify oneself with a given nickname. If another user is already con-
nected with this nickname, an error message is issued; the user must choose
another nickname. This command is also used to change one’s nickname
during a session.

join: register to a channel. If the channel does not exist yet, it is created.

privmsg: send a message to a user or a channel.

part: unregister from a channel. If the channel has no member any more, it is
destroyed.

quit: disconnect from the server. The user is unregistered from any channel
he/she was member of, and his/her nickname is available for another user
to use.

This list is not exhaustive, and voluntarily limited to the operations useful
within the scope of this work.

IRC is essentially synchronous, since messages are pushed toward the user.
The delivery delay of a message is of the order of a second.

4.1.2 Usenet

Usenet is a worldwide distributed system that stores text messages, called articles,
for a limited amount of time. It relies on a network of servers linked together in
a peer-to-peer manner. When a user posts an article to one server, it is slowly
propagated to the other servers. After some delay, the article is available on all
servers of the network. Other users can then retrieve it from any server. A given
amount of time after having been received, articles are removed from the server in
order to save disk space; this process is called expiration of the articles. Messages
are sorted by groups. Each group has a unique name within the system, and
names are hierarchically organized [Wri99].

Once a TCP connection has been established with a server, the following
operations are available:

group: select one group from which to retrieve articles.

article, head, body: retrieve one article (respectively the article’s head, the arti-
cle’s body).

post: send one article to a server; the server must permit the user to post articles.

40

quit: disconnect from the server.

This list is non-exhaustive, and voluntarily limited to the operations useful
within the scope of this work.

Usenet is essentially an asynchronous system, since the users have to ex-
plicitly poll new messages from the server. The propagation delay of a message
from one server to another depends on the configuration of the server (i.e., how
often a given server synchronizes with its neighbors in the network), and may be
of the order of several hours.

4.1.3 Other Possible Broadcast Channels

Web servers were mentioned in [WVV03] as another possibility for a broad-
cast channel: a node advertises its own existence on a dedicated Web service
(e.g. [Däm03] or gNetCache1), which publishes on the Web all these advertise-
ments. This system is similar to Usenet, but with the following distinctions:

• the advertisement publishing system is not distributed, and thus more
prone to failure

• the removal of out-of-date advertisements is not guaranteed; in practice,
such available services do not take into consideration any expiration time
for advertisements.

This work will however be limited to the study of the systems using IRC or
Usenet as broadcast channels.

4.2 Design of the Simulator

The design of the simulator has been kept as simple as possible, and the following
decisions have been made:

• All the nodes are equal, except in terms of their maximum degree. This
value synthesizes the limitations of each node in terms of processing power,
memory and network capacity. It means that, if a node has a maximum de-
gree of 20 in the simulation, the node is considered to have such processor,
memory and network link characteristics that it can accept up to 20 connec-
tions.

• The simulation has no time counter. There is no way to determine how
much time has elapsed between two events. There is however an iteration
counter, which can be used to tell that an event happened after another.

1gNetCache is currently available only as an archived source code package. It is not main-
tained anymore and probably not in use at the current time

41

• The simulator, as a program, is single-threaded, and all nodes are given a
chance to run in a first-come-first-served fashion. The nodes are not pro-
grammed as state machines, but have a behavior which is equivalent to the
state machine described in Section 4.3.

All the nodes have the same priority, and are run in turns. When a node is
running, it cannot be preempted by another one: the next node will have
a chance to run only when the previous one yields control of the proces-
sor. This will affect the results of the simulator, but all simulators are inher-
ently inaccurate on this point, because of their nature. However, since no
assumption has been made on the underlying network topology and char-
acteristics, there is no way to tell e.g., how much time the establishment of
a connection between two nodes would take, or how much time the pro-
cessing of received data by the node would take; this scheduling method is
therefore as good as any.

• The use of random numbers (or rather pseudo-random numbers) has been
minimized, in order to be able to reproduce easily one given simulation and
obtain the same results every time.

• In order to simulate the progressive arrival of nodes into the system, all
nodes are inactive (i.e., idle) when the simulation starts. At the beginning
of each iteration, a given number of inactive nodes become active (i.e., they
take actions, such as establishing connections with the broadcast channel
or with each other); only active nodes are scheduled to run. All nodes are
therefore progressively becoming active, thus simulating the introduction
of new nodes into the system.

The number of nodes that become active at each iteration is a percentage of
the total number of nodes in the system. It is not a random number, in order
to minimize the influence of randomness on the system.

The simulator, as a computer program, takes parameters which are set when
the simulator is started, and which do not change during the simulation. These
parameters are:

Number of nodes: the total number of nodes in the system.

Number of iterations: the number of times the simulator will run each node,
allowing it to perform some action (i.e., perform the equivalent of one or
more state transition(s) in a simulator that would have been implemented
as a state machine). This value can be dynamically increased if there are
still nodes performing actions at the end of the simulation, i.e., if the nodes
have not finished aggregating themselves when the predefined number of
iterations has been executed.

Maximum neighbor distribution: the statistical distribution used for generat-
ing each node’s maximum degree, which determines what random number

42

generator is used. The distribution which is used is the Gnutella Distribu-
tion, described in Appendix 2, since it is the actual distribution of the degree
of the nodes in the Gnutella network. Other distributions are also available:
normal, exponential and single value (all the nodes have the same maxi-
mum degree).

Activation probability: the percentage of the total number of nodes that become
active at the beginning of each iteration.

Minimum desired neighbor filling: the degree (expressed as a percentage of the
maximum number of neighbors) above which the node will stop trying to
discover other nodes using the broadcast channel. This value is the same
for every node.

Minimum known nodes before leaving: the number of known nodes (as a per-
centage of the maximum number of neighbors) above which the node will
leave the broadcast channel and try to establish actual connections with its
known nodes. This value is the same for every node.

Random number generator’s seed: the seed which is used to initialize the uni-
form random number generator.

Simulations based on Usenet as a broadcast channel also take the following
parameter:

Advertisement expiration age: the age (expressed as a number of iterations) of
an advertisement after which it is removed from the channel (i.e., cannot be
read anymore). This simulates the real behavior of Usenet servers, which
delete messages after some time (see Section 4.1.2) or at the date indicated
by the Expires message header [HA87]. In the simulator, the expiration time
is calculated from two parameters, a and b using the formula a× dmax(N0) +
b. This allows to set longer expiration times for nodes which are expecting
many neighbors, and shorter times for the nodes that need less neighbors.

The following parameters are available but not used:

Incoming connection acceptance probability: the probability (as a percentage)
for a node to accept an incoming connection, provided that nothing else
forbids the node to accept it. This value is by default 100% for all simula-
tions.

Connection decision probability: the probability (expressed as a percentage) for
a node to request a connection to another node, provided that nothing else
forbids the node to send this request. This value is by default 100% for all
simulations.

Channel join probability: the probability (expressed as a percentage) for a node
to join the broadcast channel, provided that nothing else forbids the node
to join it. This value is by default 100% for all simulations.

43

Channel leave probability: the probability (expressed as a percentage) for a
node to leave the broadcast channel, provided that nothing else forbids the
node to leave it. This value is by default 100% for all simulations.

These parameters are not used, because on the one hand, they have no phys-
ical justification (except maybe simulating random network or random node fail-
ures such as lost IP packets or rejected connections in case of an overloaded node),
and on the other hand, they induce more randomness in the simulation, which is
something one tries to avoid.

Each simulation is then composed of three phases:

1. the initialization phase,

2. the simulation itself,

3. the synthesis of the results.

4.2.1 Initialization

During the initialization, the uniform random number generator2 (on which all
other random number generators are based) is initialized with the random number
generator’s seed parameter. Then the nodes are instantiated in the simulator and
assigned a maximum degree, using the maximum neighbor distribution, which is
by default the Gnutella Distribution random deviate described in Appendix 2. This
value is fixed for the whole length of the simulation.

4.2.2 Simulation

The simulation is run as two nested loops:

• The outer loop runs each simulation step a given number of times (as speci-
fied by the number of iterations parameter). If in the last simulation iteration,
there are nodes which want to perform more actions, the number of itera-
tions is increased by 10%. This allows the simulation to run to an end even
if the original number of iterations was underestimated.

• The inner loop gives each node the possibility to become active, and each
active node the possibility to perform the following actions, in this order
(each action is described in detail in Chapter 6):

1. Attempt to connect to known nodes. When a connection actually takes
place, the simulator immediately runs the destination of the connection
in order to finalize the connection; this node, however, does not take
any other action at this point.

2Three different uniform random number generators are available to the simulator, which are
of uneven quality. The one used in the simulation must be chosen when the simulator is compiled
from its source code. See Appendix 2.2 for more details on those.

44

When a connection has been established, the two peers exchange a list
of their current neighbors, which is stored into each respective node’s
P2P queue (see Chapter 6 for a definition of the P2P queue).

2. Join the broadcast channel, if needed.

3. Discover other nodes using the broadcast channel. This is done by:

– Retrieving advertisement stored on the newsgroup in the case of
the simulator using Usenet as a broadcast channel

– Advertising itself to all nodes connected to the channel in the case
of the simulator using IRC as a broadcast channel. All the nodes
that are connected to the channel are processing the advertisement
immediately (this means that the simulator lets the recipient nodes
run in order to process this information; no other action is taken by
the recipient of the advertisement). If the target of the advertise-
ment has enough known nodes in its channel queue (see Chapter 6
for a definition of the channel queue) when the node advertised
itself, the recipient node leaves the channel immediately at this
point.

The information about the advertisement is stored in the node’s chan-
nel queue.

4. Leave the broadcast channel, if applicable.

5. Post an advertisement in the case of the simulator using Usenet as a
broadcast channel (in the simulator, it is not necessary to actually be on
the newsgroup to post a message, even though it is of course needed
in real life).

• the simulator using Usenet as a broadcast channel expires old advertise-
ments.

When the node attempts to connect to known nodes, it selects preferably
nodes from the P2P queue. The reason for this is to keep the channel queue as
full as possible, in order to reduce the usage of the broadcast channel. If the
P2P queue is empty, the channel queue is selected. When the selected queue
has been emptied, the other queue is not selected, even if it is non-empty. If the
node succeeds in connecting to another node, there will be no other attempt to
connect another node during this running turn of the node: the next node is run
immediately. The reason for this behavior is double:

• It prevents the node from making as many connections as possible at once
while holding back all other nodes. In a real environment, all active nodes
are attempting to make connections concurrently, thus this behavior mimics
the concurrency of the nodes’ actions.

• It prevents the node which has been able to make one connection from fur-
ther using the broadcast channel, thus reducing the network traffic on the
channel.

45

4.2.3 Synthesis

Once the simulation has been run, the simulator gathers data about the simula-
tion into a file (see Figure 23 for an example of such a file).

The following technical data about running the simulation on the computer
is collected:

• used time

• virtual memory usage

• number of iterations necessary in order to complete the simulation

The following data related to the disjoint connected components3 which
have formed during the simulation is collected:

• Number of disjoint connected components (Number of disjoint networks)

• Number of nodes in each disjoint connected component (Nodes forming a
network with node N)

• Maximum of the degrees of all the nodes in each of the connected compo-
nents (Biggest max neighbors)

• Distribution of the maximum degrees of the nodes of each connected com-
ponent (Connectability distribution)

• Distribution of the actual degree of the nodes of each connected component
(Connectivity distribution)

• Distribution (for each connected component) of the “filling” percentage of
the nodes, i.e., ratio between the actual degree over the maximum degree,
which shows how close the actual distribution of the degree at the end of
the simulation matches the distribution of the maximum degrees assigned
to the nodes at the beginning of it (Neighborhood filling level)

The following data related to the usage of the broadcast channel during the
simulation is also collected:

• Number of joins to the channel and leaves from the channel (Total channel
joins/leaves)

• Total amount of traffic to and from the broadcast channel, in bytes (Global
traffic on channel, see Chapter 5 for a detailed calculation of the traffic)

3Each connected component is identified by one of the nodes which belong to it. The simulator
searches the connected components starting from node 0 and finds all the nodes which belong to
the same component (i.e., there is a path from that node to node 0). It then searches the first node
which does not belong to the first connected component (this node will be the identifier for the
second connected component) and applies the same method, and so on until all the nodes have
been associated to one connected component.

46

• Maximum number of nodes simultaneously connected to the channel (Max
users on channel)

• Number of retrieved and posted advertisement in the case of the Usenet
simulator (Number of advertisements retrieved, Posted advertisements)

• Number of peer-to-peer connections that have been possible thanks to the
channel (i.e., using the channel queue) and number of peer-to-peer connec-
tions that have been possible thanks to the exchange of neighbor lists be-
tween two peers (i.e., using the P2P queue) (Channel/P2P connections)

External scripts can then be used to calculate statistics about the simulations
(especially, if several simulations have been run with the same parameters but
with different seeds for the random number generators, one can compute the
average and the standard deviation of the above described results) and produce
graphics showing the evolution of one result depending on the values of one
parameter.

The simulator is also capable of calculating values characterizing the con-
nected components of the network. These values are:

• Average clustering coefficient, which represents the average “density” of
connections between the neighbors of a node.

• Longest shortest path, which represents the maximum “diameter” of the
connected component; routing a message between two nodes of the com-
ponent will require at most this number of hops.

• Average shortest path, which represents the average “distance” between
two nodes, i.e., the average number of hops needed for routing a message
between two nodes of the network.

These values take however a long time to compute (depending on the size
of the network, it can take longer than the simulation itself); therefore they must
be explicitly required when running a simulation (in practice, the code must be
activated in the simulator at compile time).

4.3 The Simulator as a State Machine

Traditional network simulators implement the nodes as state machines, since the
nodes are actually implementing specific networking protocols, which are often
designed as state machines. Figure 8 represents a state machine which has a
behavior equivalent to the nodes in the simulator. The flowchart is simplified
compared to the simulator, since it does not take into account the fact that there
are two distinct queues of known nodes. Moreover, the state machine assumes
that the broadcast channel is an IRC channel.

47

i
d
l
e

a
c
t
i
v
a
t
e

c
o
n
n
e
c
t

I
R
C

a
d
v
e
r
t
i
s
e
m
e
n
t

a
d
d

t
o

q
u
e
u
e

c
o
n
n
e
c
t
i
o
n

r
e
q
u
e
s
t

a
d
d

n
o
d
e
s

t
o

q
u
e
u
e

t
o

s
e
l
f
:

c
h
e
c
k

q
u
e
u
e

c
h
e
c
k

q
u
e
u
e

t
o

s
e
l
f
:

c
h
e
c
k

l
i
s
t

t
o

n
o
d
e
:

c
o
n
n
e
c
t
i
o
n

r
e
q
u
e
s
t

c
o
n
n
e
c
t
i
o
n

a
c
k
n
o
w
l
e
d
g
e
m
e
n
t

t
o

s
e
l
f
:

c
h
e
c
k

q
u
e
u
ed
e
q
u
e
u
e

t
h
e

f
i
r
s
t

n
o
d
e

t
o

s
e
l
f
:

c
h
e
c
k

q
u
e
u
e

d
i
s
c
o
n
n
e
c
t

I
R
C

w
a
i
t

a
c
c
e
p
t
?

n
o

y
e
s

w
a
i
t

w
a
i
t

c
o
n
n
e
c
t

t
o

i
r
c
?

n
o

y
e
s

e
m
p
t
y
?

y
e
s

n
o

c
o
n
n
e
c
t

t
o

t
h
e

n
o
d
e
?

y
e
s

n
o

a
l
r
e
a
d
y

c
o
n
n
e
c
t
e
d

t
o

i
r
c
?

n
o

y
e
s

e
n
o
u
g
h

k
n
o
w
n

n
o
d
e
s
?

y
e
s

n
o

d
i
s
c
o
n
n
e
c
t

I
R
C
?

y
e
s

n
o

d
i
s
c
a
r
d

i
t

i
s

i
t

a
l
r
e
a
d
y

a

n
e
i
g
h
b
o
r
?

y
e
s

n
o

t
o

n
o
d
e
:

c
o
n
n
e
c
t
i
o
n

a
c
k
n
o
w
l
e
d
g
e
m
e
n
t

FIGURE 8 Flowchart of the state machine equivalent to the nodes in the simulator

48

The state machine has one idle state, which is the state in which the node is
when it has not yet been activated. The activate message, sent by e.g the user of
the node, will change the state from idle to wait. During this transition, the node
also sends a message to itself to check the queue of known nodes. This will im-
mediately trigger a state transition, where the node will check the queue, notice
that it is empty, and join the broadcast channel. At this point, the node has noth-
ing else to do besides waiting for incoming advertisements from the broadcast
channel or incoming connection requests from other nodes.

A simulator based on this state machine would schedule the next node after
the node has made one state transition, in order to simulate multitasking. On the
opposite, the simulator described in this work runs the whole process described
above in one shot. Both simulators would however be in the same state after the
above steps have been performed.

Since both the hypothetical and the actual simulator would be single-
threaded and running on one single processor, two events E1 and E2 (triggering
the sending of a message in the state machine simulator or actions in the actual
simulator) targeted at node T cannot happen concurrently while the simulator is
running. Moreover, let us suppose that E1 occurs before E2. We can then show
that the two types of implementation yield equivalent results:

• In the state machine simulator, the message sent on E1 will be placed in the
input queue of T, then the message sent on E2 will be placed in the same
queue. When T will actually process these messages, it will process them in
the order they appear in the queue, i.e., first the message from E1, then the
one from E2. There is no way the messages would be placed in the queue in
an order different from which they were sent (i.e., different from the order
in which the events happened).

• In the actual simulator, when E1 occurs, an action is taken and its result is
immediately applied to T. Then when E2 occurs, the result of the action is
applied to T also. The two actions have occurred in the same order as the
events have happened. Since the execution of the action is immediate, there
is no way the processing of E1 can be held back by the processing of E2.

In both simulators, the order of the events and their associated processing
would be the same; it is therefore reasonable to state that they would yield the
same results.

5 TRAFFIC ESTIMATION

Although the simulator described later in this work does not implement any pro-
tocol as such, it is possible to estimate the traffic generated by the nodes toward
the broadcast channel, by estimating what protocol request and reply messages
would be used if a protocol (IRC protocol or NNTP) was actually implemented
and how much bandwidth these messages would require.

Each node needs to realize the following four operations in order to use the
broadcast channel:

joining the channel: this operation consists in establishing a TCP connection to
the server that handles the broadcast channel (i.e., an IRC server or an
Usenet server), and whatever protocol-specific initialization is necessary to
actually join the broadcast channel.

sending an advertisement: this operation consists in sending an advertisement,
as described in Section 2.4.1. For further reference, the length of this mes-
sage is 171 characters (once the extraneous white space has been removed).

receiving an advertisement: this operation consists in passively receiving an ad-
vertisement that is pushed towards the node by another node (like it is the
case in IRC), or actively poll an advertisement that is stored on the server
(like it is in Usenet).

leaving the channel: this operation consists in leaving the broadcast channel and
disconnect from the server at TCP level.

50

5.1 IRC Protocol

The IRC protocol [OR93] is a text-mode, line-oriented protocol. Each protocol
message is one line of text which is composed of one optional prefix (which al-
ways starts with a colon), a command, a list of parameters, and an end-of-line
marker. The different elements of a message are separated with spaces, and
the end-of-line marker is the ASCII “Carriage Return” character followed by the
“Line Feed” character.

The protocol needs the following parameters:

Nickname: each user connected to an IRC network is required to have a unique
nickname. The simplest way for the nodes to choose a nickname is to gen-
erate it at random, and in order to minimize the risks of nickname collision
(i.e., two different users choosing the same nickname), the length of the
nickname will always be the maximum length, i.e., 9 characters.

Server name: this is the domain name of the IRC server the node connects to. Its
length can be anything, therefore the chosen value is 10 characters.

Channel name: the name of the channel is #p2padvertisement (as described in Sec-
tion 2.4.2) , therefore its length is 17 characters.

Real name: this is a mandatory parameter for the USER command, but it can be
left empty. Its length is therefore 0 characters.

Username: this is normally the username of the user that connects to the IRC
server. It has to be unique within the node’s computer, and can be as simple
as one character. Its length is therefore 1 character.

Hostname: this is the name of the machine from which the node connects to the
IRC server. Assuming that it is always an IP number, its length is therefore
15 characters.

Client mode: it is advised that the nodes set their user mode to “invisible” (noted
i), in order not to be seen by robots that send unsolicited messages to IRC
users. The length of the client mode is therefore 1 character.

Quit message: When quitting IRC while on a channel, one can send a message to
other users. This can be left empty, and has therefore a size of 0 characters.

5.1.1 Joining the Broadcast Channel

The connections process requires the client to connect to the IRC server at TCP
level. Once this connection has been established, mandatory messages are ex-
changed as shown in Figure 9(a): the client sends a NICK request and a USERre-
quest (see Figures 24(a) and 24(b) respectively). The server then replies with var-
ious messages, including a greeting, information about the state and features of

51

CLIENT SERVER

various replies

MODE

JOIN

353

366

USER

MODE

JOIN

NICK

(a) Joining

PRIVMSG request

PRIVMSG indication

CLIENT SERVER OTHER CLIENTS

(b) Advertisement

confirmation
QUIT indication

QUIT

request
QUIT

CLIENT SERVER OTHER CLIENTS

(c) Leaving

FIGURE 9 Minimal IRC protocol sequences

the server, and the “message of the day” (usually rules defined by the administra-
tor of the server about its utilization); these messages are all in the form of numer-
ical replies (see Figure 25(a)) and amount to 3488 + 50× nickname + 51× channel
bytes for the IRC server irc.jyu.fi . The client then sends MODEand JOIN re-
quests (Figures 24(c) and 24(d)), and the server replies with the corresponding
confirmations (Figures 25(b) and 25(c)) and sends the list of the members of the
channel. Since an IRC message cannot exceed 512 bytes overall, the server may
send several List of names replies (see Figure 25(d)); the last List of names reply is
followed by the End of names reply (see Figure 25(e)). Given the limited length of
the IRC message, one can fit at most 46 names (of length 9 bytes) in one List of
names reply message. The traffic generated by the list of names is thus equal to
508× (members/46) + 48 + 10× (members mod 46) bytes.

The total traffic Tj (in bytes) generated by a node connecting to the broadcast
channel is thus given by the following formula:

Tj = 4978 + 54×members + 508× (members/46) + 10× (members mod 46) (1)

The number of members on the channel, members, includes the node that is
currently joining the broadcast channel.

5.1.2 Advertising

Once the node has joined the broadcast channel, it can immediately advertise
itself to the other members of the channel, by sending a PRIVMSGrequest (see
Figure 24(e)). This command is then forwarded to all other members of the chan-
nel, which receive a PRIVMSGindication (see Figure 26(a)), as illustrated in Fig-
ure 9(b).

52

The total amount of traffic Ta generated by one node advertising itself on
the broadcast channel is therefore:

Ta = 199 + (members− 1)× 228 (2)

The number of members on the channel, members, includes the node that is
sending the advertisement.

5.1.3 Leaving the Broadcast Channel

When the node decides to disconnect from the broadcast channel, it sends a QUIT
request (see Figure 24(f)) and receives an error message from the server (Fig-
ure 26(c)); the server forwards at the same time a QUIT indication to all other
members of the channel.

The total amount of traffic Tl generated by one node leaving the broadcast
channel is therefore:

Tl = 62 + 39× (members− 1) (3)

The number of members on the channel, members, includes the node that is
currently leaving the channel.

5.2 NNTP

Like the IRC protocol, NNTP [KL86, Bar00] is a text-mode, line-oriented proto-
col. Each protocol message is made of ASCII characters and composed of one
command (for the queries) or one 3-digit code (for the responses), followed by
a white-separated list of arguments and terminated by a “Carriage Return-Line
Feed” character pair.

Some messages, especially the POSTquery and the reply to the BODYquery,
contain multiple lines, and are then terminated by a period on a single line.

The protocol needs the following parameters:

group name: the name of the newsgroup where the advertisements will be sent
to and retrieved from. The newsgroup used in this case will be alt.test ;
the length of the group name is therefore 8 characters.

numbers: numbers are used in NNTP to identify articles locally on the server.
Since the numbers are represented in text format, their length (in terms of
characters) may vary. Since alt.test is a group with a lot of traffic, we can
estimate that the numbers will be coded on 7 positions in average, i.e., that
the length of any number will be of 7 characters.

overview record: the Usenet servers maintain, for each newsgroup, a so-called
overview database that summarizes the content of the group. Each record of
that database concerns one article and is a tabulation-separated list of fields,
such as the subject, the author and the posting date, as well as its length and

53

CLIENT SERVER

LIST OVERVIEW.FMT

GROUP

211

200

215

XOVER

224

(a) Joining

CLIENT SERVER

QUIT

205

(b) Leaving

CLIENT SERVER

BODY

222

(c) Receiving an advertisement

CLIENT SERVER

POST

340

Message

240

(d) Sending an advertisement

FIGURE 10 Minimal NNTP sequences

its relation to other articles (especially which other article(s) it is a reply to).
The length of such records is variable, but an acceptable average length of
the record can be computed after taking a snapshot of the alt.test group;
the result of this calculation is about 212 characters.

5.2.1 Joining the Broadcast Channel

The connection process requires the client to connect to the Usenet server at TCP
level. The following sequence of protocol commands is illustrated in Figure 10(a).
First, the client receives a greeting message from the server (see Figure 28(a)),
which specifies to the client if posting is allowed or not (if the client is not al-
lowed to post, the node cannot advertise itself; however, it can still receive the

54

advertisements from other nodes). The client then sends a GROUPcommand (Fig-
ure 27(a)) in order to select the appropriate newsgroup, and the server replies
with the estimated number of articles in the group, the indexes of the first and
last articles and the name of the group (Figure 28(b)). The client then sends the
LIST OVERVIEW.FMTcommand (Figure 27(b), in order to receive the list of the
fields of the overview database (Figure 28(c)). Once it has received it from the
server, it can send the XOVERcommand (Figure 27(c)) to receive a complete list
of articles between a given range of indexes (see Figure 28(d)). The first value of
that range will be the index of the last article previously read by the node from
that server (the node must of course remember the value), or the index of the first
available article, as returned by the GROUPreply, it is the first time the node con-
nects to that server. The second value will be the index of the last available article,
as indicated by the GROUPreply. This way, the node is ensured not to read several
times the same article, in the case it joins the broadcast channel several times in
a row. Once the node has received the overview of the group, it can filter out the
articles which are irrelevant to it (i.e., whose subject is not “p2padvertisement”)
and prepare to receive the relevant ones.

However, the newsgroup that has been chosen to store the advertisements
is not dedicated to this purpose. In fact, alt.test has an average traffic of
424 articles a day (computed from a snapshot taken January 19th, 2005), which
will add overhead to the reply of the XOVERcommand. Since the simulator does
not take time into consideration at all, it is impossible to evaluate the amount
of that overhead. Therefore, it will simply be ignored, even though the nodes
querying the overview database will have an impact in terms of network traffic
on the server.

The total traffic Tj generated by a node connecting to the broadcast channel
depends on R, which is the number of articles requested by the XOVERcommand,
is therefore:

Tj = 327 + 214R (4)

5.2.2 Retrieving an Advertisement

The retrieval of an advertisement is described in Figure 10(c). The node must
decide, based on the content of the overview database it received, what article
it will request. Thereafter, the article can be retrieved with the BODYcommand,
which returns the index of the article, its Message-Id and the actual body of the
article. Headers are not useful for the node, since all the needed information is
located in the body of the article; retrieving only the body is therefore sufficient.

The total amount of traffic Tr that is generated by one node retrieving one
article is therefore:

Tr = 244 (5)

55

5.2.3 Sending an Advertisement

Sending an advertisement to the newsgroup is done as follows (see also Fig-
ure 10(d)): the client sends a POSTmessage (Figure 27(e)), and the server replies
with a confirmation message and a recommended Message-Id value (Figure 28(f)).
If the client does not have posting permission, a different message is sent, telling
the client that posting is not allowed; in the latter case, the client must abort the
posting procedure. We assume here that the node is allowed to post. After receiv-
ing the confirmation message, the client sends the article composed of 3 manda-
tory headers (Subject, From and Newsgroups) and containing the advertisement in
its body (see Figure 27(f)). The server then replies with a confirmation message
that the article has been posted (Figure 28(g)). If the message is not valid, an error
message is replied instead of the confirmation.

The amount of traffic Ts generated by the sending of an advertisement is:

Ts = 376 (6)

5.2.4 Leaving the Broadcast Channel

When the node decides do disconnect from the broadcast channel (see Fig-
ure 10(b), it sends a QUIT command (Figure 27(g)), to which the server sends a
confirmation message (Figure 28(h)).

The amount of traffic Tl generated by the leaving process is:

Tl = 13 (7)

56

6 NODE BEHAVIORS

This chapter describes in more detail the different actions that a node can perform
while it is run by the simulator, as was described in Section 4.2.2.

From a programming point of view, each node maintains a list of neighbors
(CN0) and two queues of known nodes (whose union forms KN0):

• The P2P queue contains the known nodes that the node has learned about di-
rectly from neighbors: when a connection is established between two nodes,
they both exchange a list of their neighbors (as described in Section 6.1.1).
These lists are then used to populate the P2P queue of each node respec-
tively.

• The channel queue contains the known nodes that the node has learned about
from the broadcast channel: the purpose of the broadcast channel is to get
to know other nodes. Other nodes that are advertised on the broadcast
channel are used to populate the channel queue.

6.1 Common Behaviors

The following behaviors are the same whatever the type of the broadcast channel.

6.1.1 Neighbors Lists Exchange

Once a new connection has been established between two nodes, they exchange
the lists of their respective neighbors. Since one of the goals of this work is to

58

find a way to minimize the use of the broadcast channel, this behavior, which is
a common practice in fully distributed P2P file sharing systems such as Gnutella,
allows to get to know more nodes without using the broadcast channel. Its im-
plementation in a P2P protocol could be done in two ways:

• After the connection has been established, each node sends the list of its
neighbors to the neighbor using a specific protocol command.

• The list of neighbors are sent as a part of the connection request and con-
nection acknowledgment commands; this could increase the load of the net-
work if connections are often rejected.

The simulator does not implement any specific P2P protocol; however, when a
connection is established, the list of neighbors are copied from the node to its
neighbor’s P2P queue and vice versa.

6.1.2 Connection Requests

Connection requests are always sent when there is a possibility to do so. It is
assumed that the nodes are eager to aggregate themselves into a network and to
have as many neighbors as possible. The only case when a node will not send a
connection request to another node is when it holds enough neighbors, i.e., when
its degree has reached a given threshold (which may be equal to or lower than its
maximum degree).

6.1.3 Incoming Connections

Incoming connection requests are accepted based on Algorithm 1. If the node
cannot afford to get one more neighbor, i.e., its degree is equal to its maximum
degree, then the node will not accept any incoming connection. Moreover, in or-
der to prevent the creation of a partitioned network (that is, a network composed
of two or more distinct connected components), the node will reject a connection
request issued by another node which can accept only one more neighbor (i.e.,
the other node’s degree is equal to its maximum degree minus 1) if the node itself
can also accept only one more neighbor. For that purpose, a hypothetical P2P
protocol following these requirements would require that the connection request
message contains a flag stating that requester can accept only one more neighbor.

6.1.4 Joining the Broadcast Channel

The broadcast channel will be joined based on Algorithm 2. The node will join the
broadcast channel if it still wants to connect to other nodes, but does not know
any other nodes (because e.g., all the known nodes it knew about have rejected
its connection requests); by doing so, it may get to know other nodes that want
to establish new connections. However, if the broadcast channel has reached its
full capacity, the node cannot join it.

59

Input: N0 the node that receives the connection request
N1 the node that has sent the connection request

Output: accept or reject the connection
if d(N0) = dmax(N0) then

reject the connection
else if d(N0) = dmax(N0)− 1 and d(N1) = dmax(N1)− 1 then

reject the connection
else

accept the connection
end if

ALGORITHM 1 Incoming request acceptance

Input: N0 the node making the decision
B the broadcast channel
J the set of connections to the broadcast channel
threshold the minimum desired neighbor filling

Output: join or do not join the broadcast channel
if N0 is connected to B then

do not join
else if d(N0) = dmax(N0) then

do not join
else if |J| = |J|max then

do no join
else if

∣∣KN0

∣∣ = ∅ and d(N0)/dmax(N0) <= threshold then
join

else
do not join

end if

ALGORITHM 2 Channel joining decision

60

6.1.5 Leaving the Broadcast Channel

Leaving the broadcast channel is done based on Algorithm 3. The node will leave
the broadcast channel when it has come to know enough other nodes, i.e., the
number of nodes it knows is equal to or greater than a given threshold. Besides,
in order to prevent any node staying indefinitely on the broadcast channel, the
node will leave the broadcast channel if it has been connected to it for a number
of simulation cycles equal to or greater than a given threshold.

Input: N0 the node making the decision
B the broadcast channel
f illing the minimum desired neighbor filling
maxTime the maximum time a node can remain connected to B

Output: leave or do not leave the broadcast channel
if N0 is not connected to B then

do not leave
else if

∣∣KN0

∣∣ =
∣∣KN0

∣∣
max then

leave
else if d(N0)/dmax(N0) > f illing then

leave
else if Number of simulation cycles N0 has been connected to B ≥ maxTime
then

leave
else

do not leave
end if

ALGORITHM 3 Channel leaving decision

6.1.6 Connection Target Selection

When attempting to establish new connections, Algorithm 4 applies. For the pur-
pose of selecting the target of a connection request, one defines two subsets of
KN0 :

• Kchannel
N0

is the set of known nodes that N0 got to know about through the
broadcast channel.

• KP2P
N0

is the set of known nodes that N0 got to know about through the ex-
change of lists of neighbors, as described in 6.1.1.

From a programming point of view, the two sets described above are imple-
mented as queues, respectively called the channel queue and the P2P queue. The
discrimination between the two possible origins of the known nodes exists be-
cause the simulator gathers statistical information about how many connections
between nodes have been established using the broadcast channel and how many
from the peer-to-peer exchange of neighbor list.

61

Because of the implementation of the simulator, the two queues are however
not equal: the P2P queue has a higher priority than the channel queue, meaning
that when the node will look for nodes to which to connect, it will first consider
the P2P queue, and only when the P2P queue is empty, it will consider the channel
queue.

Input: N0 the acting node
Output: nothing

if KP2P
N0
6= ∅ then

while KP2P
N0
6= ∅ and no connection has been established do

N ← dequeue the first other node in the channel queue
if N ∈ CN0 then

loop again
else

try to establish a connection to N
end if

end while
else if Kchannel

N0
6= ∅ then

while Kchannel
N0

6= ∅ and no connection has been established do
N ← dequeue the first other node of the channel queue
if N ∈ CN0 then

loop again
else

try to establish a connection to N
end if

end while
end if

ALGORITHM 4 Connection target selection

6.2 Specific Behaviors

The following behaviors differ depending on the type of broadcast channel.

6.2.1 IRC as a Broadcast Channel

Just after joining the channel, the node advertises itself to all other nodes on the
channel. This is equivalent to sending a PRIVMSG (see Section 4.1.1) to the IRC
channel which other nodes are listening to. This self-advertisement is made only
once after joining the IRC channel. The node then waits for the unknown nodes
present on the channel to request a connection to the node. The node is thus not
discovering unknown nodes, but is being discovered by them.

62

6.2.2 Usenet as a Broadcast Channel

Just after joining the channel, the node retrieves advertisements of unknown
nodes. If not enough advertisements have been found, the node posts an ad-
vertisement of itself to the channel, in order to be discovered by unknown nodes.
Advertisements are posted based on Algorithm 5.

Input: N0 the node making the decision
limit minimum known nodes for leaving

Output: post or do not post an advertisement
if the previous advertisement of N0 has not been expired yet then

do not post
else if

∣∣KN0

∣∣ < limit then
post

else if d(N0) = dmax(N0) then
do not post

else if KN0 = ∅ then
post

else
do not post

end if

ALGORITHM 5 Posting decision

7 EXPERIMENTAL RESULTS

7.1 Goals of the Simulations

The goal of this work is to find optimum or near-optimum values of the vari-
ous parameters of the simulation in order to prevent the creation of disjoint con-
nected components in the network and at the same time minimize the strain on
the broadcast channel. As simulation results will show it, these two goals are
opposed, therefore a trade-off between these two goals needs to be found.

7.1.1 Disjoint Networks

Disjoint connected components are unavoidable, but two different cases must be
considered.

• Several disjoint connected components with one of them of a much larger
size than the others: this is not a bad case since in a real system, the nodes
in the smaller connected components will soon notice there are not enough
other nodes to transact with and will then join the broadcast channel to find
more connections or disconnect from their current neighbors and attempt
to create new connections with the largest connected component; this kind
of behavior is however not implemented in the simulator, since it requires
the node to actually transact, meaning that a real P2P protocol has to be
implemented in the node.

Algorithm 1 (page 59) prevents the formation of small connected compo-
nents by forbidding two nodes that can establish each only one connection

64

(i.e., the node’s degrees are equal to their maximum degree minus one) to
connect to each other, thus both giving up on trying to establish new con-
nections. This behavior especially prevents the creation of connected com-
ponents made of nodes having each a maximum degree of two and con-
nected to each other as a ring, or made of two nodes having a maximum de-
gree of one. In practice, one can however see in simulation results disjoint
connected components where some nodes still could try to establish new
connections, but are prevented from doing so by the value of the minimum
desired neighbor filling being lower than their actual degree over maximum
degree ratio. Optimizing the value of this parameter will help preventing
the creation of more than one connected component.

• Several disjoint connected components of approximately the same size: this
is the worst case scenario, since the connected component is sufficiently
large for all the nodes in it to find enough neighbors without the need to join
the broadcast channel for more, thus eliminating all possibility to establish
a bridge between the connected components.

7.1.2 Usage of the Broadcast Channel

The broadcast channel, be it IRC or Usenet, is a public infrastructure of the Inter-
net that has not been designed with advertisement of P2P networks in mind. It is
obvious that the more nodes will use the system to join a network, the more the
broadcast channel will be used. Each step of the communication with the broad-
cast channel (join, leave, send or receive an advertisement) will generate network
traffic.

In the case of IRC being used as the broadcast channel, the goals are:

• To minimize the number of times a node joins the channel, since each joining
generates traffic, not only because of the joining step, but also because of the
leaving step which needs to happen at some point.

• To minimize the time a node spends on the channel, since it will automati-
cally receive the advertisements that newcomers to the channel will send.

• To minimize the number of nodes present on the channel at one given time,
because the more nodes are on the channel, the more memory is required
from the IRC server to store information about the channel members, and
the more network traffic is generated when a node joins, leaves or sends an
advertisement.

In the case of Usenet being used as the broadcast channel, the goals are:

• To minimize the number of times a node joins the channel, for the same
reasons as the ones evoked above about IRC.

• To minimize the number of advertisements the node retrieves from the
Usenet server. This can be done in two ways:

65

1. Prevent the node from retrieving advertisements that it has already
retrieved before and which are still stored on the server.

2. Set the expiration date of the messages so as to prevent advertisements
from being stored there too long (older advertisements have a higher
probability of being useless, since the nodes who posted them have
probably already established connections to other nodes).

7.2 Parameters of the Simulation

The simulator accepts twelve parameters, but only a few of them are the real
unknowns of the problem: Minimum desired neighbor filling, Minimum known
nodes count for leaving, Maximum channel staying duration and Channel capacity;
in the Usenet-based simulator, the Advertisement expiration age is an additional
unknown.

The following parameters are fixed for all simulations:

Max neighbor distribution is set to powerlaw, since this is the actual connection
distribution of the Gnutella network.

Activation probability is set to 1.0.

Incoming connection acceptance probability is set to 100% since there is no rea-
son why a node should reject an incoming connection (other than the rea-
sons evoked in Section 6.1.3, Incoming Connections).

Connection decision probability is set to 100% since the nodes are meant to be
eager to establish new connections; there is thus no reason why a node
should decide not to connect to another node (other than the reasons in-
voked in Section 6.1.2, Connection Requests) when it has the possibility to do
so.

Channel join probability is set to 100% since there is no reason why a node
should decide not to join the broadcast channel when it needs to do so (other
than the reasons evoked in Section 6.1.4, Joining the Broadcast Channel).

Channel leave probability is set to 100% since the node should not stay longer
on the channel than it is absolutely necessary, as defined in Section 6.1.5,
Leaving the Broadcast Channel.

The Number of nodes is not a real unknown, but the search for the optimum
values of the above mentioned unknowns may depend on it. Thus the simula-
tions will be run several times, with different numbers of nodes. The maximum
value of this number is however limited by the amount of memory available in
the computer running the simulation, and by the time taken by the simulations
to complete.

66

7.3 Processing of the Results

Unless otherwise stated, all the simulations mentioned below have been run ten
times with the same parameters, but with different values of the seed of the ran-
dom number generator. The values chosen for the seed are the numbers 1 to 10,
since these are as good as any other.

As mentioned in 4.2.3, once all the individual simulations have been run
(i.e., with different values of the same parameters), a first script called efficiency
extracts the interesting values from the result files of each individual simulation
and outputs a summary of the simulation:

• The clustering efficiency index, which evaluates how well the nodes have
clustered during the simulation. The formula is

η =
∑Ci⊂G |Ci|2

maxCi⊂G |Ci|2
(8)

where G is the network and Ci ⊂ G are the disjoint connected components.

The use of squares emphasizes the difference between the sizes of the con-
nected components, and the division by the size of the largest component
restricts η to [1, n + 1]1, where n is the number of disjoint connected compo-
nents. η = 1 means that there is only one single connected component, and
when η gets close to n + 1, there are multiple disjoint components which
have more or less even sizes. The goal is to have η = 1, or at least as close
to 1 as possible.

• The number of disjoint connected components

• The number of times the channel has been joined (in the IRC simulator)

• The average traffic per node (i.e., the sum of all traffic generated during the
simulation divided by the number of nodes)

A second script called average calculates the average and the standard devi-
ation of each of the above-mentioned values over the ten values of the seed, in
order to minimize the effect of randomness on the results.

A third and final script (combine) combines the values of the average traffic
per node and the clustering efficiency index according to the following formula:

E(t, c) =
{

t + c, if c > 1 + ε

t, if c ≤ 1 + ε
, (9)

where t is the normalized traffic per node and c is the clustering efficiency in-
dex. The value of ε must be chosen so that, as explained in Section 7.1.1, only

1The actual range is assumed to be [1, n], but it is not trivial to prove, whereas the previous one
is. Moreover, the demonstration would be irrelevant here.

67

very small secondary connected components (SCC) are allowed to exist. A value
of ε = 10−4 would allow e.g., one SCC of approximately 1% of the size of the giant
connected component (GCC) to exist, or two small SCC of approximately 0.7% of
the size of the GCC, assuming that the size of the GCC is much larger than the
one of the SCC.

The formula for E(t, c) reflects the fact that the clustering efficiency is bi-
nary and prevails over the traffic: if the clustering efficiency is not good enough,
the set of parameters that led to this result are discarded, with no regard to the
traffic, otherwise, only the traffic is considered when evaluating the fitness of the
parameters. Therefore, when E(t, c) ≥ 1 the result is considered as “bad” and
when E(t, c) < 1 it is considered as “good”.

7.4 IRC-based Simulation Results

7.4.1 Simulations of 1000 Nodes

At first, simulations using IRC as a broadcast channel have been run with 1000
nodes and with the value of the minimum desired neighbor filling equal to 1, 5, 10,
. . . , 95, 100 and the value of the minimum known nodes count for leaving equal to 1, 5,
10, . . . , 95, 100 (as mentioned in Section 4.2, these values are actually percentages
of the maximum degree of the nodes). Several statistical data have been gathered
from the results of the various simulations and are shown in Figures 11 and 12.

Figure 11(a) shows that small values of the parameters result in the for-
mation of several disjoint components. Simulation results show (for illustration
purposes) that values of 1 for both parameters and a value of 10 for the seed of
the random number generator yields twenty connected components with sizes
ranging from 5 to 215, and a median size of 35. The value of the minimum desired
neighbor filling has more influence on the clustering process than the value of the
minimum known nodes count for leaving: whatever the value of the minimum known
nodes count for leaving, the clustering coefficient is above 1.0001 for values of the
minimum desired neighbor filling lower than 30. Moreover, for values of the mini-
mum desired neighbor filling above 55, the clustering coefficient is always equal to
or lower than 1.0001. The band situated between the values 30 and 55 of this pa-
rameter is rather chaotic, and the value of the clustering coefficient there depends
greatly on the seed of the random number generator.

The results can be explained by the fact that the closer the degree of the
node is to its maximum degree (i.e., the “filling level” is close to the maximum),
the more tightly the network is connected and the less possibilities there is for
disconnected components to survive. Moreover, the relatively small influence of
the number of known nodes on the clustering can be explained by the fact that
a node gathers knowledge of other nodes mostly by exchanging lists of neigh-
bors with its own neighbors (in order to minimize the usage of the broadcast
channel). Therefore, most of the known nodes are already part of the same con-

68

 1

 1.5

 2

 2.5

 3

 3.5

C
lu

st
er

in
g

in
de

x

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Clustering efficiency (filling+known_nodes-irc-powerlaw-10_rounds-1000_nodes)
 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) Clustering efficiency as a function of the minimum desired neighbor filling and
the minimum known nodes count for leaving. The area at the right of the contour
line has a clustering coefficient equal to or lower than 1.0001

 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500
 10000
 10500
 11000

N
et

w
or

k
tr

af
fic

 p
er

 n
od

e
(in

 b
yt

es
)

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Network traffic per node (filling+known_nodes-irc-powerlaw-10_rounds-1000_nodes)
 1e+04
 9e+03
 8e+03
 7e+03

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Network traffic per node (in bytes) as a function of the minimum desired neigh-
bor filling and the minimum known nodes count for leaving

FIGURE 11 Results of the IRC-based simulations

69

 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24

N
um

be
r

of
 u

se
rs

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Max users on channel (filling+known_nodes-irc-powerlaw-10_rounds-1000_nodes)
 22
 20
 18
 16
 14
 12
 10
 8
 6

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) Maximum number of users on the broadcast channel

 1000

 1050

 1100

 1150

 1200

 1250

 1300

N
um

be
r

of
 c

ha
nn

el
 jo

in
s

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Broadcast channel joins (filling+known_nodes-irc-powerlaw-10_rounds-1000_nodes)
1.25e+03
 1.2e+03
1.15e+03
 1.1e+03
1.05e+03

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Number of joins to the broadcast channel

FIGURE 12 Results of the IRC-based simulations (continued)

70

nected component as the one the node belongs to, meaning that the connections
between two disjoint connected components are not favored by the increase of the
minimum known nodes count for leaving. Very low values of this parameter favor
the creation of several disjoint connected components, but that effect diminishes
quickly when the value increases.

Figure 11(b) shows that the network traffic per node (in- and out-going)
is between 6000 and 11000 bytes for the duration of the simulation (since the
simulation does not refer to time in any way, it is not possible to calculate the
data rate in bytes/s). The traffic depends almost equally on the values of the
minimum desired neighbor filling and the minimum known nodes count for leaving.
This can be explained by the fact that when these two values are high, the node
will join the broadcast channel more often, leading to an increase in the traffic.

Figure 12(a) shows that the maximum number of users connected to the
broadcast channel during one simulation varies between 4 and 24 and depends
mostly on the minimum known nodes count for leaving, with a minimum for lower
values of the parameters. This is consistent with the fact that when the node tries
to get to know more other nodes it stays longer on the channel; the nodes then
start to accumulate on the channel.

Figure 12(b) shows that the number of joins to the broadcast channel during
one simulation increases when the minimum desired neighbor filling increases and
the minimum known nodes count for leaving decreases. This is consistent with the
fact that the longer the node remains on the channel (i.e., with a high value of
minimum known nodes count for leaving), the more nodes it gets to know and the
higher the possibilities to establish new connections, and that the more neighbors
it wants to be connected to (i.e., a high value of the minimum desired neighbor
filling), the more nodes it needs to get to know, either by joining the broadcast
channel more often, or by staying longer on the channel.

Figure 13 represents a combination of the normalized value of the traffic
and of the clustering coefficient, according to the formula presented in Section 7.3.
Values above 1 on the map mean that the simulation led to a situation with a clus-
tering coefficient above 1.00012. Conforming to what was described above, lower
values of the minimum desired neighbor filling lead to the formation of disconnected
components in the network, but also of lower traffic. The optimum is therefore
in an uncertain region, where the two constraints are opposing each-other and
whose location may be changing with different parameters of the simulation (like
the number of nodes or the seed of the random number generator).

One can read from the map that the optimum is reached for values of min-
imum desired neighbor filling between 30 and 35 and for values of the minimum
known nodes count for leaving between 1 and 5. The choice of the optimal values of
the minimum desired neighbor filling and the minimum known nodes count for leaving
is however not straightforward: the frontier on the map between the areas where
disconnected components are created and the area where they can be ignored is
uncertain and depends on a random value.

2It could also mean that the traffic is so important that its normalized value is above 0.9999;
this however can happen in practice only with values of both parameters close to 100.

71

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-irc-powerlaw-10_rounds-1000_nodes)
 0.363
 0.34
 0.317
 0.294
 0.272
 0.249
 0.226
 0.203
 0.181
 0.158

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FIGURE 13 Efficiency of the IRC-based simulations

7.4.2 Influence of the Number of Nodes

Figure 14 shows the average clustering efficiency for 1000 to 10000 nodes by step
of 1000 nodes. The gray level represents the standard deviation divided by the
mean, which is close to zero for the values on the right side of the curve. This in-
dicates that the clustering efficiency varies very little when the number of nodes
varies. It moreover remains satisfactory (i.e., below the threshold of 1.0001) for
the values of the minimum desired neighbor filling above 35 and low values of min-
imum known nodes count for leaving, which were found to be close-to-optimum in
Section 7.4.1.

A study (see Appendix 5.1) of the variation of the traffic per node as a func-
tion of the number of nodes (T(N)) shows that with a value of the minimum de-
sired neighbor filling of 1, the function is of the form T(N) = ai,j + bi,j log N (with
i taking the chosen values of the minimum desired neighbor filling and j taking the
values of minimum known nodes count for leaving), and the correlation coefficient
between T and log N is above 0.97. When the value of the minimum desired neigh-
bor filling increases, the correlation coefficient diminishes. Plotting T(N) for given
values of the minimum desired neighbor filling and the minimum known nodes count
for leaving shows that the traffic cannot be characterized anymore as a log N func-
tion and the plot resembles more a constant function with noise (the value of the
correlation coefficient is not anymore meaningful since it characterizes only the
noise). In the latter case, the relative noise, measured as the ratio of the standard
deviation of the traffic values over the average traffic values, is below 0.5%. The
traffic per node can then be considered as independent of the number of nodes.

72

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

R
el

at
iv

e
de

vi
at

io
n

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Clustering_avg-filling+known_nodes-irc-powerlaw-10_rounds-1000_to_10000_nodes
 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FIGURE 14 Average clustering efficiency of the IRC-based simulations for 1000 to 10000
nodes by step of 1000 nodes. The Gray level represents the standard devia-
tion divided by the mean. The area on the right side of the contour line has
an average clustering ratio lower than or equal to 1.0001

Figure 15 shows that while the number of nodes increases, the location of
the optimum remains approximately on the same spot. Because of the use of
random numbers in the simulations, the frontier between acceptable and non-
acceptable clustering coefficients varies, but the graphs show that the variation is
small.

One can however estimate with good confidence that a value of the mini-
mum desired neighbor filling of 35 and a value of the minimum known nodes count for
leaving between 1 and 5 is as close to the optimal as one can dare to go without
risking to have too high a clustering coefficient.

7.4.3 Network Characterization

The network can be characterized with the three values described in Section 4.2.3.
The following parameters have been used for the simulations:

• the number of nodes is 1000,

• the minimum desired neighbor filling is 35,

• the minimum known nodes count for leaving is 5,

• the values of the seed of the random number generator have been chosen
so that the resulting network is made of one single connected component.
The values are 3, 5, 6, 7, 8 and 10.

73

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-irc-powerlaw-10_rounds-1000_nodes)
 0.363
 0.34
 0.317
 0.294
 0.272
 0.249
 0.226
 0.203
 0.181
 0.158

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) 1000 nodes

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-irc-powerlaw-10_rounds-2000_nodes)
 0.238
 0.223
 0.209
 0.195
 0.181
 0.166
 0.152
 0.138
 0.124

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) 2000 nodes

 0

 1

 2

 3

 4

 5

 6

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-irc-powerlaw-10_rounds-4000_nodes)
 0.304
 0.281
 0.259
 0.237
 0.215
 0.193
 0.171
 0.149
 0.126
 0.104

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(c) 4000 nodes

 0

 1

 2

 3

 4

 5

 6

 7

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-irc-powerlaw-10_rounds-6000_nodes)
 0.272
 0.251
 0.229
 0.208
 0.187
 0.166
 0.145
 0.123
 0.102

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) 6000 nodes

 0
 1
 2
 3
 4
 5
 6
 7
 8

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-irc-powerlaw-10_rounds-8000_nodes)
 0.307
 0.284
 0.262
 0.239
 0.217
 0.194
 0.171
 0.149
 0.126
 0.104

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(e) 8000 nodes

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-irc-powerlaw-10_rounds-10000_nodes)
 0.299
 0.277
 0.255
 0.233
 0.211
 0.189
 0.167
 0.145
 0.123
 0.101

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(f) 10000 nodes

FIGURE 15 Efficiency of the IRC-based simulations for increasing numbers of nodes

74

The clustering coefficient of the network is between 0.576 and 0.590, with a
mean of 0.582 and a median of 0.582. The longest shortest path is between 9 and 21,
with a mean of 12.7 and a median of 11. The average shortest path is between 3.83
and 7.82, with a mean of 5.00 and a median of 4.37.

7.5 Usenet-based Simulation Results

7.5.1 Simulations of 1000 Nodes

At first, simulations using Usenet as a broadcast channel have been run with 1000
nodes and with the value of the minimum desired neighbor filling equal to 1, 5, 10,
. . . , 95, 100 and the value of the minimum known nodes count for leaving equal to 1, 5,
10, . . . , 95, 100 (as mentioned in Section 4.2, these values are actually percentages
of the maximum degree of the nodes). Several statistical data have been gathered
from the results of the various simulations and are shown in Figure 16.

Figure 16(a) shows that small values of the parameters result in the for-
mation of several disjoint components. Simulation results show (for illustration
purposes) that values of 1 for both parameters and a value of 10 for the seed
of the random number generator yields thirty connected components with sizes
ranging from 2 to 71, and a median size of 12. The value of the minimum de-
sired neighbor filling has more influence on the clustering process than the value
of the minimum known nodes count for leaving: most values of the minimum known
nodes count for leaving (with the notable exception of 35; this can be attributed to
randomness in the simulations) lead to a clustering coefficient above 1.0001 for
values of the minimum desired neighbor filling lower than 35. Moreover, for values
of the minimum desired neighbor filling above 50, the clustering coefficient is always
equal to or lower than 1.0001.

Like in the case of the IRC-based simulations, the results can be explained
by the fact that the closer the degree of the node is to its maximum degree (i.e., the
“filling level” is close to the maximum), the more tightly the network is connected
and the less possibilities there are for disconnected components to survive.

Figure 16(b) shows that the network traffic per node (in- and out-going)
is between 20000 and 140000 bytes for the duration of the simulation (since the
simulation does not refer to time in any way, it is not possible to calculate the data
rate in bytes/s). The traffic depends mainly on the values of the minimum known
nodes count for leaving. With a value of 1 for this parameter, the traffic reaches its
maximum, then reaches its minimum with a value of 5 of the same parameter,
and increases up to about 50000 bytes when the parameter increases to 100. The
influence of the minimum desired neighbor filling parameter is less important: when
that parameter increases, the traffic increases as well.

The influence of the minimum known nodes count for leaving can be explained
by the fact that the parameter is a percentage of the maximum degree of the node:
since the upper limit of this degree is 99, the actual minimum known nodes count

75

 1

 1.5

 2

 2.5

 3

 3.5

C
lu

st
er

in
g

in
de

x

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Clustering efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-1000_nodes)
 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) Clustering efficiency as a function of the minimum desired neighbor filling and
the minimum known nodes count for leaving. The area at the right of the contour
line has a clustering coefficient equal to or lower than 1.0001

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Network traffic per node (filling+known_nodes-usenet-powerlaw-10_rounds-1000_nodes)
 1.2e+05
 1.1e+05
 1e+05
 9e+04
 8e+04
 7e+04
 6e+04
 5e+04
 4e+04
 3e+04
 2e+04

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Network traffic per node (in bytes) as a function of the minimum desired neigh-
bor filling and the minimum known nodes count for leaving

FIGURE 16 Results of the Usenet-based simulations

76

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-1000_nodes)
 0.0357
 0.0299
 0.0241

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FIGURE 17 Efficiency of the Usenet-based simulations

for leaving for each node is 1 node (in this particular case, we consider the actual
number of nodes, not the percentage of the maximum degree), even for the nodes
which have a high value for their maximum degree. The nodes will then connect
to the channel every time they want to discover more other nodes. Each connec-
tion generates much traffic, in addition to the traffic necessary for receiving the
advertisements, which explains why traffic is high when the value of the mini-
mum known nodes count for leaving is 1, and drops when its value is 5. When the
minimum known nodes count for leaving increases toward 100, the increase in the
traffic is explained by the fact that the node receives many advertisements on
each connection.

Figure 17 represents a combination of the normalized value of the traffic
and of the clustering coefficient, according to the formula presented in Section 7.3.
Values above 1 on the map mean that the simulation led to a situation with a clus-
tering coefficient above 1.00013. Conforming to what was described above, lower
values of the minimum desired neighbor filling lead to the formation of disconnected
components in the network, but also of lower traffic. The optimum is therefore
in an uncertain region, where the two constraints are opposing each-other and
whose location may be changing with different parameters of the simulation (like
the number of nodes or the seed of the random number generator).

One can read from that map that the optimum4 reached for values of min-
imum desired neighbor filling between 30 and 50 and for a value of the minimum

3It could also mean that the traffic is so important that its normalized value is above 0.9999;
this however can happen in practice only with values of both parameters close to 100.

4The actual optimum is surrounded by values which are far from optimal; this “optimum” is
considered as a simulation artifact and is therefore disregarded.

77

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

R
el

at
iv

e
de

vi
at

io
n

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Clustering_avg-filling+known_nodes-usenet-powerlaw-10_rounds-1000_to_10000_nodes
 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FIGURE 18 Average clustering efficiency in the Usenet-based simulations for 1000 to
10000 nodes by step of 1000 nodes. The gray level represents the standard
deviation divided by the mean. The area on the right side of the contour
line has an average clustering ratio lower than or equal to 1.0001

known nodes count for leaving of 10. The choice of the optimal values of the mini-
mum desired neighbor filling and the minimum known nodes count for leaving is how-
ever not straightforward: the frontier on the map between the areas where dis-
connected components are created and the area where they can be ignored is
uncertain and depends on a random value.

7.5.2 Influence of the Number of Nodes

Figure 18 shows the average clustering efficiency for 1000 to 10000 nodes by step
of 1000 nodes. The gray level represents the standard deviation divided by the
mean, which is close to zero for the values on the right side of the curve. This in-
dicates that the clustering efficiency varies very little when the number of nodes
varies. It moreover remains satisfactory (i.e., below the threshold of 1.0001) for
the values of the minimum desired neighbor filling above 35 and low values of min-
imum known nodes count for leaving, which were found to be close-to-optimum in
Section 7.5.1. One can therefore generalize these conclusions to greater numbers
of nodes.

A study (see Appendix 5.2) of the variation of the traffic per node as
a function of the number of nodes (T(N)) shows that the function is of the
form T(N) = ai,j + bi,jN (with i taking the chosen values of the minimum desired
neighbor filling and j taking the values of minimum known nodes count for leaving),
and the correlation coefficient between T and N is above 0.81, with a median
value of 0.982. The correlation coefficient decreases when the values of both
parameters increase.

78

Figure 19 shows that while the number of nodes increases, the location of
the optimum remains approximately on the same spot. Because of the use of
random numbers in the simulations, the frontier between acceptable and non-
acceptable clustering coefficients varies, but the graphs show that the variation is
small.

One can however estimate with good confidence that a value of the mini-
mum desired neighbor filling of 35 to 40 and a value of the minimum known nodes
count for leaving between 10 and 15 is as close to the optimum as one can dare to
go without risking to have too high a clustering coefficient.

7.5.3 Influence of the Expiration Time

The Usenet messages may contain the optional header Expires [HA87] that sets
the expiration date of the message. This allows to control the lifetime of the ad-
vertisement depending on the number of neighbors the node wants to gather.
The simulation shows (see Figure 20) that optimal values for a and b (see Sec-
tion 4.2 page 42 for the definition of the parameters) are in the intervals [0.4, 0.5]
and [0, 10] respectively; the optimum is located at (a, b) = (0.3, 5). These low val-
ues show that nodes find neighbors quite quickly, i.e., after only few iterations.

7.5.4 Network Characterization

The network can be characterized with the three values described in Section 4.2.3.
The following parameters have been used for the simulations:

• the number of nodes is 1000,

• the minimum desired neighbor filling is 35,

• the minimum known nodes count for leaving is 10,

• the a and b parameters of the expiration time are 0.3 and 5, respectively,

• the values of the seed of the random number generator have been chosen
so that the resulting network is made of one single connected component.
On the contrary to the case of the simulator using IRC, all values of the seed
(from 1 to 10) give acceptable results.

The clustering coefficient of the network is between 0.688 and 0.731, with a
mean of 0.704 and a median of 0.695. The longest shortest path is between 7 and 10,
with a mean of 8.6 and a median of 9. The average shortest path is between 3.81
and 4.39, with a mean of 4.00 and a median of 3.91.

79

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-1000_nodes)
 0.0357
 0.0299
 0.0241

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) 1000 nodes

 0
 1
 2
 3
 4
 5
 6
 7
 8

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-2000_nodes)
 0.0176
 0.015

 0.0128

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) 2000 nodes

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-4000_nodes)
 0.0121
 0.0103
 0.008

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(c) 4000 nodes

 0

 2

 4

 6

 8

 10

 12

 14

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-6000_nodes)
 0.0129
 0.0101
 0.00748

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) 6000 nodes

 0
 2
 4
 6
 8
 10
 12
 14
 16

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-8000_nodes)
 0.0124
 0.011

 0.00906

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(e) 8000 nodes

 0

 5

 10

 15

 20

 25

S
im

ul
at

io
n

ef
fic

ie
nc

y

Filling threshold

K
no

w
n

no
de

s
th

re
sh

ol
d

Simulation efficiency (filling+known_nodes-usenet-powerlaw-10_rounds-10000_nodes)
 0.0114
 0.00973
 0.00843

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(f) 10000 nodes

FIGURE 19 Efficiency of the Usenet-based simulations for increasing numbers of nodes

80

 0

 0.5

 1

 1.5

 2

 2.5

S
im

ul
at

io
n

ef
fic

ie
nc

y

Expiration age parameter a

E
xp

ira
tio

n
ag

e
pa

ra
m

et
er

 b

Simulation efficiency (expiration_age-usenet-powerlaw-10_rounds-1000_nodes)
 0.0629
 0.0455
 0.0254

 0 0.5 1 1.5 2
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

FIGURE 20 Efficiency of the Usenet-based simulations with variable expiration time
(varying a and b parameters) and values of the minimum desired neighbor
filling and the minimum known nodes count for leaving set to respectively 35
and 10

8 CONCLUSION

Peer-to-peer applications are more and more common nowadays on the Internet,
mainly aimed at person-to-person file sharing or message exchange. Although
the Internet, as a network, is by design a peer-to-peer system, most applications,
including the most successful ones, have been designed with a client/server ar-
chitecture. The usage of these traditional applications is constantly decreasing,
while peer-to-peer applications are gaining ground.

Peer-to-peer applications connected to each other form an overlay network,
having its own structure and which is often independent of the underlying net-
work structure. Since peer-to-peer networks are in some sense autonomous,
when an isolated node wants to join such a network, it needs to acquire specific
technical information, called binding information, about a least one node, the entry
point which is already part of the network. Connecting to the entry point will
then make the node a part of the network. The problem of acquiring the binding
information is usually considered as trivial and delegated to one single source
of information. This single source of information is a weakness in the organiza-
tion of the network, since if it is removed, it can prevent anyone from joining the
network.

The goal of the work presented in this thesis was therefore to develop a
fully distributed system providing the same service, which cannot therefore be
removed, and which uses the existing infrastructure of the Internet. IRC and
Usenet were chosen as such systems, since they are both widely deployed, well
known, and fully distributed. Using World Wide Web search engines and random
network scanning were also briefly considered.

A formal protocol for publishing binding information was described, al-
lowing the user to transparently access the information through any of the media

82

described above. A formal notation was also defined, in order to formalize and
shorten the descriptions of the behaviors of the nodes using the protocol.

A software simulator was built in order to simulate the behavior of the sys-
tem, prove its validity and study its impact on the infrastructure it relies on (IRC
or Usenet) in terms of bandwidth usage. The simulator considered and imple-
mented only the behavior of the nodes on a functional level, not the detailed
exchange of data that would have been required in the real system. These behav-
iors were also described in detail in the thesis. The simulator also assumed that
the nodes were willing to discover as many other nodes as necessary in order to
establish connections and thus to acquire as many neighbors as possible, up to a
given limit.

In the system based on IRC, the nodes trying to join the network published
their own binding information on a broadcast channel (an IRC channel with a
predefined name in this case). The nodes which were already part of the network
and were willing to establish more connections could then connect to the ones
advertising themselves.

In the system based on Usenet, the nodes trying to join the network read
Usenet articles from a given newsgroup, looking for binding information. If they
succeeded, they would use the information in order to attempt to establish a con-
nection, otherwise they would publish their own binding information in the hope
that another node would attempt to connect to them.

The simulations were run with several parameters in order to determine an
optimum set of values for the parameters. These parameters concerned (1) the
number of neighbors a node needs to have in order to give up active attempts to
acquire more neighbors, thus relying only on being found by others (minimum de-
sired neighbor filling) and (2) the number of other nodes a node needs to discover
(but not connect to) in order to give up using the broadcast channel (minimum
known nodes count for leaving). In the case of the Usenet-based simulator, the expi-
ration time of the articles was also considered (expiration time).

The simulations produced values that represented mainly the average traffic
generated by the system and an index representing how efficiently the nodes
had clustered, the goal being to prevent the creation of a partitioned network.
These two results were then combined into a single efficiency index of the system.
The same simulations were run for an increasing number of nodes (from 1000
to 10,000), trying to predict the scalability of the system.

The results of the simulations showed that with carefully chosen values of
the parameters, it was possible to advertise peer-to-peer networks in a fully de-
centralized way, using for that purpose already existing Internet infrastructures
such as the IRC networks or the Usenet network. The method of advertisement
that was described in this work, used with proper values of the parameters, al-
lowed nodes to aggregate into a network made of one single connected compo-
nent, which was the first requirement for the system to be considered as “work-
ing”.

Both types of simulations, i.e., using IRC or Usenet as a broadcast channel
for the advertisement, behaved similarly and yielded optimal results for approx-

83

imately the same values of the parameters:

• Low values of the minimum desired neighbor filling produced several disjoint
connected components, whereas higher values guaranteed a single con-
nected component. Lower values however also reduced the network traffic
per node which occurred between the node and the broadcast channel.

• Low values of the minimum known nodes count for leaving led to a lower traffic
per node, but had very little influence on the clustering efficiency (in the
case of the IRC-based system).

• The optimum was located in an area where the minimization of the traffic
conflicted with the creation of more than one connected components. The
actual optimum had therefore to be chosen so that the probability of get-
ting several disjoint connected components was low, but without getting
too high network traffic values.

Moreover, in the case of the Usenet-based simulations, the expiration times
of the advertisements had to be taken into consideration in order to minimize the
traffic.

The optimal values for the IRC-based simulations were a minimum desired
neighbor filling of 35 and a minimum known nodes count for leaving of 5. These pa-
rameters led to a traffic of 6900 bytes per node. The optimal values for the Usenet-
based simulations were a minimum desired neighbor filling of 35, a minimum known
nodes count for leaving of 10, and values of the a and b parameters of the expiration
time set to respectively 0.3 and 5. These parameters led to a traffic of 9400 bytes
per node.

The IRC-based system generated only 3/4 of the traffic produced by Usenet-
based system, but Usenet servers are in practice usually dimensioned for much
higher traffic than IRC servers. However, the traffic per node in the Usenet-based
simulations depended on the number of nodes in the network, whereas it was
constant in the case of the IRC-based system, meaning that large networks using
Usenet will generate much more traffic than smaller ones.

The minimum desired neighbor filling influenced strongly the clustering effi-
ciency of both IRC- and Usenet-based simulations whereas the minimum known
nodes count for leaving had little influence on the clustering efficiency. This can
be explained by the fact that a node gathered knowledge of other nodes mostly
by exchanging lists of neighbors with its own neighbors (in order to minimize
the usage of the broadcast channel). Therefore, most of the known nodes were
already part of the same connected component as the one the node belonged to,
meaning that the connections between two disjoint connected components were
not favored by the increase of the minimum known nodes count for leaving.

The minimum desired neighbor filling influenced strongly the network traffic
of the IRC-based simulations; the minimum known nodes count for leaving had much
influence on the traffic of the Usenet-based simulations. This can be explained by
the difference in ways IRC and Usenet work: gathering more neighbors required
staying connected longer to the IRC channel or retrieving more advertisements

84

from the Usenet server, but getting additional known nodes when the minimum
known nodes count for leaving was low required to reconnect often to the broad-
cast channel, and doing so in Usenet generated much more overhead traffic than
in IRC. The traffic generated by the overhead was more important than the one
generated by a prolonged usage of the broadcast channel, which explained the
difference in the results of the simulation.

Finally, the characterization of the network created during the simulation
showed that the networks were similar, but the simulations using Usenet pro-
duced networks that were more tightly connected than the simulations based on
IRC: the clustering coefficient was higher in the first case, and the so called “di-
ameter” of the network (characterized by the longest and the average shortest
paths) was shorter. These results showed that using Usenet as a broadcast chan-
nel was producing slightly “better quality” networks, but at the expense of more
network traffic.

Further work on the subject may study the efficiency of a WWW-based ad-
vertisement system, which was described but not implemented, as well as an
optimal scheme for random IP address “knocking” in case none of the above-
mentioned broadcast channels (IRC, Usenet, Web server) is available. The scheme
could e.g., be based on the statistical distribution of the IP address classes to var-
ious organizations as well as the distribution of IP addresses to the hosts within
these classes, in order to maximize the probability of discovering a member of the
peer-to-peer network one tries to join.

Moreover, the current advertisement system relies on the fact that each and
every node in the network is eager to take part in the advertisement process.
In reality, however, the nodes often act selfishly, and are not willing to share a
part of their resources for the common good: the influence of such nodes on the
efficiency of system is still to be researched.

APPENDIX 1 SIMULATOR’S FLOWCHARTS

The following flowcharts represent the flow of operations in the variant of the
simulator that uses IRC as a broadcast channel, and in the one using Usenet; they
are called “IRC simulator” and “Usenet simulator”, respectively.

86

FIGURE 21 Flowchart of the IRC-based simulator

87

FIGURE 22 Flowchart of the Usenet-based simulator

APPENDIX 2 GNUTELLA DISTRIBUTION RANDOM
DEVIATE

Appendix 2.1 Algorithm

In [RIF02], the connectivity distribution of Gnutella nodes is described as follows:

• For node’s degrees between 1 and 10, the distribution is mostly uniform.

• For node’s degrees between 10 and 100, the distribution is power-law.

In addition, [SGG01] proposes a value of λ = 2.3 as parameter of the power-law
distribution.

Let us name G as the connectivity distribution. For the sake of simplicity,
we consider that G is uniform for 1 ≤ degree ≤ 10 and follows a power-law
distribution for 10 ≤ degree ≤ 100. The uniform part of G follows c(x) = C for
x ∈ [1, 10], and the power-law part of G is of the form p(x) = Kx−λ for x ∈
[10, 100]. We also consider that the curve of the entire distribution is continuous,
i.e., that c(10) = p(10).

The strategy adopted for creating a random deviate of G is the following.
Let us name A0 the area under the curve of c and A1 the area under the curve of
p. The properties of statistical distributions imply that the area under the curve
of G is equal to 1. We then have:

A0 + A1 = 1 (10)

This means that a random deviate of G has a probability of A0 of being
uniformly distributed between 1 and 10, and a probability of 1 − A0 of being
power-law-distributed between 10 and 100. Therefore, the first step in creating
a random deviate of G will consist in deciding to which part of G it belongs.
This decision can be taken using a uniform random deviate. The second step
then consists in generating a random number following c or p, according to the
decision taken above.

Equation 10 is equivalent to∫ 10

1
c(x) dx +

∫ 100

10
p(x) dx = 1 (11)

The function P(x) = − K
1−λ x1−λ + Q being a primitive of p(x), we can write

A0 = 9C (12)
A1 = P(100)− P(10) (13)

=
K

λ− 1

(
101−λ − 1001−λ

)
(14)

89

Since p(10) = c(10), we have 10−λK = C, therefore

K = 10λC (15)

We can then write

C =
1

9 + 10λ

λ−1

(
101−λ − 1001−λ

) (16)

The numerical calculation with λ = 2.3 then gives:

C = 0.06132418896883533025

From 15 and 12, we draw

A0 = 0.55191770071951797225

The transformation method described in [PFTV92, Chapter 7] allows to find
a method for computing random deviate of the p distribution, using the inverse
function of P. We have the following constraints:∫ 100

10
p(x) dx = P(100)− P(10) = 1 (17)

and
P(10) = 0 (18)

From 14 and 17, since in this particular case we have A1 = 1, we can draw

K =
1− λ

101−λ − 1001−λ
(19)

and from 18 and 19 we can draw

Q =
1

1− 101−λ
(20)

The numerical calculations with λ = 2.3 gives

K = −27.30700218286377281390
Q = 1.05276314482179845912

We can then use P−1, the inverse function of P, to calculate a random num-
ber following the distribution of p.

P−1(y) =
(

1− λ

K
(Q− y)

) 1
1−λ

(21)

If y is a random number generated by a uniform deviate in [0, 1], then
P−1(y) is a power-law 2.3 deviate in [10, 100].

Finally, generating a random number following the distribution of c can be
done with the formula:

x = 9y + 1 (22)

If y is a uniform deviate in [0, 1], then x is a uniform deviate in [1, 10].
The algorithm of a deviate following G is then described in Algorithm 6. It

relies on the function my_rand() which is a uniform random deviate in [0, 1].

90

if my_rand() < 0.5519 then
return my_rand()× 9 + 1

else
return (0.04761× (1.053−my_rand())−0.7692

end if

ALGORITHM 6 Gnutella deviate

Appendix 2.2 Goodness of Fit

The random deviate for p has been tested for goodness-of-fit using the χ2 method,
as described in [Knu98]. The main idea behind the test is to evaluate how a set
of experimental values (obtained from the random deviate) fits a set of expected
values (obtained from the theoretical distribution of the random deviate). Once
the χ2 has been calculated, one can deduce, based on the χ2 statistical distribu-
tion, the probability that the experimental distribution is identical to the expected
distribution. Once this probability is known, the rest is a matter of interpretation.
[Knu98] states that probabilities situated in the [0.10, 0.90] interval are acceptable
values, meaning that the random deviate produces a distribution similar to the
expected distribution. Below 0.10, the experimental values are too close to the
theoretical ones to be considered as truly random values, and above 0.90, they
are too random to be considered close enough to the distribution of the expected
values.

Three different uniform deviate have been use as implementation of the
my_rand() function:

1. The GNU C Library rand() function.

2. The ran1() function described in [PFTV92, Section 7.1].

3. The algorithm described in [MN98] and implemented by Takuji Nishimura.

The results of the Gnutella deviate depend on the quality of the uniform
deviate and on the value of the seed. The χ2 value has been computed from a
set of 100,000 random values, and 15 similar χ2 tests have been run, each with a
different seed. The seed for each run was taken from the computer’s system clock
using the Unix time() function, which returns the number of seconds elapsed since
January 1st, 1970. The results were as follows:

• With the GNU C Library rand() function, 8 runs out of 15 gave χ2 values
within the [0.10, 0.90] probability interval.

• With the ran1() function described in [PFTV92, Section 7.1], 11 runs out of 15
gave χ2 values within the [0.10, 0.90] probability interval.

• With the algorithm from [MN98], 13 runs out of 15 gave χ2 values within
the [0.10, 0.90] probability interval.

APPENDIX 3 SIMULATION RESULTS FILE EXAMPLE

IRC simulator, build 290
Command line: /home/mweber/research/external-adv-simulator/bin/simulator-irc

1000 2000 powerlaw 1 100 100 100 100 1000 2000 45 25 0:50 9
Parameters:

Number of nodes: 1000
Number of iterations: 2000
Max neighbor distribution: powerlaw
Activation probability: 1.000000
Incoming connection acceptance probability: 100.000000
Connection decision probability: 100.000000
Channel join probability: 100.000000
Channel leave probability: 100.000000
Maximum channel stay duration: 1000
Channel capacity: 2000
Minimum desired neighbor filling: 45.000000
Minimum known nodes count for leaving: 25.000000

Random generator seed: 9
Running time: 2 sec
Memory usage: 4252 kB
Nodes forming a network with node 0: 997

Biggest max neighbors: 98
Connectability distribution: 48 76 59 60 68 58 65 60 61 52 35 35 37 22 35 24 14 11

17 9 7 4 7 12 4 6 4 6 5 5 4 3 5 5 8 3 5 2 2 2 3 0 1 2
5 2 0 0 1 3 0 1 4 2 0 1 0 1 2 3 1 1 1 3 1 0 0 0 1 1 0
0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 2 0 0 0 0 2 0 0 1 1 1

Connectivity distribution: 49 75 59 60 68 58 65 60 61 52 35 35 37 22 35 24 14 11
17 9 7 4 7 12 4 6 4 6 5 5 4 3 5 5 8 3 5 2 2 2 3 0 1 2
5 2 0 0 1 4 0 2 5 3 0 1 0 1 2 2 2 1 2 2 1 1 0 1 3 1 1
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Neighborhood filling level: 0 0 0 0 0 1 0 3 8 5 980
Nodes forming a network with node 886: 3

Biggest max neighbors: 98
Connectability distribution: 2 0 1 0

0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Connectivity distribution: 2 1 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Neighborhood filling level: 0 0 0 0 0 0 0 1 0 0 2
Number of disjoint networks: 2
Total channel joins/leaves: 1039/1036
Max users on channel: 11
Global traffic on channel: 7485584
Channel/P2P connections: 1381/4896
Iterations without action before the end: 1228
Real iterations used: 772

FIGURE 23 Example of the results of one simulation

APPENDIX 4 IRC AND NNTP PROTOCOL MESSAGES

This appendix contains the descriptions of the IRC [OR93] and NNTP [KL86]
protocol messages described in Chapter 5. Each figure represents the structure
of the messages, the length of each part and the total length of the message. The
typographical convention for the parts of the message is as follows:

• Text strings are set in fixed width font .

• Single ASCII characters are represented in roman font; white space charac-
ters are represented by a symbolic name (“sp” is “space”, “cr” is “carriage
return” and “lf” is “line feed”); unspecified digits are represented by the
string “digit”.

• Arguments are represented by their names and set in italic font.

• A framed ellipsis (· · ·) represent protocol parts of unspecified length, re-
peating previous parts.

• If a protocol message is too long to fit on one single line, it is split across
several lines. The lines after the first one are indented and preceded by an
ellipsis (· · ·) (which is not framed, on the contrary to the one above.)

The length of each part is shown in exponent, and each part is placed inside a
frame in order to clearly show the separation between the different parts of a
message.

93

NICK 4 sp1 nickname 9 crlf 2

(a) NICK request (16 bytes)

USER4 sp1 username 1 sp1 hostname 15 sp1 servername 10 sp1 : 1 realname 0 crlf 2

(b) USER request (37 bytes)

MODE4 sp1 nickname 9 sp1 user modes 1 crlf 2

(c) MODE request (18 bytes)

JOIN 4 sp1 channel 17 crlf 2

(d) JOIN request (24 bytes)

PRIVMSG6 sp1 channel 17 sp1 : 1 message 171 crlf 2

(e) PRIVMSG request (199 bytes)

QUIT 4 crlf 2

(f) QUIT request (6 bytes)

FIGURE 24 IRC request messages sent by the node and their sizes

94

: 1 servername 10 sp1 digit1 digit1 digit1 sp1 parameters · · · crlf 2

(a) Numerical replies (18 + n bytes)

: 1 nickname 9 sp1 MODE4 sp1 nickname 9 sp1 : 1 user modes 1 crlf 2

(b) MODE confirmation (30 bytes)

: 1 nickname 9 ! 1 username 1 @1 hostname 15 sp1 JOIN 4 sp1 : 1 channel 17 crlf 2

(c) JOIN indication and confirmation (54 bytes)

: 1 servername 10 sp1 353 3 sp1 nickname 9 @1 sp1 channel 17 sp1 : 1

· · · nickname 9 sp1 · · · crlf 2

(d) Name reply (48 + 10×members, members ≤ 46 bytes)

: 1 servername 10 sp1 366 3 sp1 nickname 9 channel 17 sp1 : 1

· · · End of NAMES list. 18 crlf 2

(e) End of name reply (64 bytes)

FIGURE 25 IRC indication messages received by the node during the connection step
and their sizes

: 1 nickname 9 ! 1 username 1 @1 hostname 15 sp1 PRIVMSG7 sp1 channel 17

· · · sp1 : 1 message 171 crlf 2

(a) PRIVMSG indication (228 bytes)

: 1 nickname 9 ! 1 username 1 @1 hostname 15 sp1 QUIT 4 sp1 : 1 "" 2 crlf 2

(b) QUIT indication (39 bytes)

ERROR5 sp1 : 1 Closing Link: 13 sp1 nickname 9 [1 username 1 @1 hostname 15

· · ·] 1 sp1 ("") 4 crlf 2

(c) QUIT confirmation (56 bytes)

FIGURE 26 IRC indication and confirmation messages received by the node after the
connection step and their sizes

95

GROUP5 sp1 group 8 crlf 2

(a) GROUP request (16 bytes)

LIST OVERVIEW.FMT17 crlf 2

(b) LIST OVERVIEW.FMT request (19 bytes)

XOVER5 number 7 - 1 number 7 crlf 2

(c) XOVER request (22 bytes)

BODY4 sp1 number 7 crlf 2

(d) BODY request (14 bytes)

POST4 crlf 2

(e) POST request (6 bytes)

From: 5 sp1 username 1 @1 hostname 15 crlf 2 Subject: 8 sp1 subject 16 crlf 2

· · · Newsgroups: 11 sp1 group 8 crlf 2 crlf 2 message 171 crlf 2 . 1 crlf 2

(f) POST request continuation (252 bytes)

QUIT 4 crlf 2

(g) QUIT request (6 bytes)

FIGURE 27 NNTP request messages sent by the node and their sizes

96

200 3 sp1 greeting 49 sp1 (posting ok). 14 crlf 2

(a) Server greeting (70 bytes)

211 3 sp1 number 7 sp1 number 7 sp1 number 7 group 8 crlf 2

(b) GROUP reply (37 bytes)

215 3 sp1 Order of fields in overview database. 38 crlf 2

· · · list of fields 78 . 1 crlf 2

(c) LIST OVERVIEW.FMT reply (125 bytes)

224 3 sp1 number 7 - 1 number 7 sp1 fields follow 13 crlf 2 overview record 212

· · · crlf 2 · · · . 1 crlf 2

(d) XOVER reply (38 + 214× records bytes)

222 3 sp1 number 7 sp1 message-ID 35 sp1 body 4 crlf 2 message 171 crlf 2 . 1 crlf 2

(e) BODY reply (230 bytes)

340 3 sp1 Ok, recommended ID 19 sp1 message-ID 35 crlf 2

(f) POST reply (61 bytes)

240 3 sp1 Article posted 15 sp1 message-ID 35 crlf 2

(g) POST confirmation (57 bytes)

205 3 sp1 . 1 crlf 2

(h) QUIT reply (7 bytes)

FIGURE 28 NNTP indication messages received by the node and their sizes

APPENDIX 5 TRAFFIC PER NODE FOR INCREASING
NUMBER OF NODES

The following tables represent the results of the linear regression (with the least-
squares method) of the clustering efficiency for increasing numbers of nodes; the
first table is for the IRC based system, and the second is for the Usenet-based one.

Two regression models, linear (of the form ax + b) and logarithmic1 (of the
form alogx + b), have been considered for each pair of minimum desired neighbor
filling and minimum known nodes count for leaving and the one yielding the best
correlation coefficient has been chosen.

The first two columns are the values of the minimum desired neighbor filling
and the minimum known nodes count for leaving. The third column shows therefore
which model has been chosen. The fourth and fifth columns show the a and b
values resulting from the linear regression, respectively. The sixth column is the
correlation coefficient of the data.

Appendix 5.1 IRC-Based System

001 001 log 10.2096624861302 6199.67777941911 0.970774016395325
001 005 log 15.615035966996 6231.54489444667 0.981493745577975
001 010 log 29.1538351143142 6300.1442006426 0.977871022971157
001 015 log 49.1689357507987 6309.27170481303 0.972935785994571
001 020 log 80.9738492626845 6238.60426940236 0.974588734638538
001 025 log 117.122649599588 6112.59255239095 0.976807022312565
001 030 log 154.318641917281 5941.60035415086 0.978428217651762
001 035 log 196.895085480216 5742.77269062085 0.97936062998198
001 040 log 247.691629540707 5483.20538223842 0.981202300690396
001 045 log 295.441930796687 5205.15999762297 0.98274649028911
001 050 log 363.814346972795 4834.49461934367 0.985617961635142
001 055 log 409.214428958451 4528.31533172771 0.986986300173046
001 060 log 471.723093777034 4154.52462417985 0.988543806459406
001 065 log 527.231405531174 3785.17103622968 0.989908831640928
001 070 log 591.428000233981 3387.17668278803 0.990729171034307
001 075 log 657.55422652365 2968.4549595315 0.991824396682392
001 080 log 787.972781568821 1958.63071530838 0.993824734641786
001 085 log 842.851536905828 1585.33955449625 0.994888539371551
001 090 log 908.082206754916 1153.20872014773 0.995638035484306
001 095 log 964.019648343999 758.329162169151 0.996431047025823
001 100 log 1071.56997978809 88.715543327311 0.996966901881438

005 001 log 10.5359273359059 6219.06371757906 0.934471470747877
005 005 log 10.2095441165086 6286.71641878578 0.996565987378989
005 010 log 15.1902908802056 6433.1827462365 0.983626167089593
005 015 log 20.9836381631275 6576.02563278083 0.983305243269473
005 020 log 34.142902116392 6681.64244020891 0.981883485890179
005 025 log 48.0332430173792 6767.12104642503 0.978629477103462
005 030 log 63.1508903023265 6807.49574865058 0.97641231895364
005 035 log 80.627834571642 6850.80548393754 0.971375127138366
005 040 log 104.160213896063 6854.89841662282 0.97334691601997
005 045 log 126.493338015578 6825.38076128752 0.970340034193438
005 050 log 162.565534643892 6773.50037357497 0.970376383310814
005 055 log 184.410168470675 6703.02621541301 0.967903310593675
005 060 log 222.648541914689 6576.71642092424 0.967627693963661
005 065 log 256.98063990497 6428.24521619493 0.965845713425723
005 070 log 303.995338484148 6217.69510143306 0.964049155250952
005 075 log 355.101446989876 5971.0249679625 0.962430634269511
005 080 log 405.346824981377 5702.75284505485 0.961703976043779
005 085 log 455.178123201645 5414.20251993507 0.961386074982267
005 090 log 515.637359339739 5068.01678428175 0.961881703984075
005 095 log 572.925702216614 4706.30840324895 0.962043583342371
005 100 log 679.227873692728 4114.5232632589 0.961477147674987

010 001 log 2.8149972035319 6350.13565314568 0.674381869770872
010 005 log 5.8246568225902 6353.62532121524 0.929193095899557
010 010 log 8.72023379125099 6502.71405824188 0.953213658619659
010 015 log 10.9035861305221 6675.26437578918 0.974484622323375

1The data has been linearized before applying the linear regression method

98

010 020 log 17.528492559952 6840.74816985182 0.983698678694823
010 025 log 23.8531691714907 6997.66844832774 0.984182716252314
010 030 log 30.3063343901149 7119.41432356047 0.980429786160978
010 035 log 37.7673492260735 7257.42985078092 0.974749209812963
010 040 log 49.0933784301636 7377.08705640543 0.976420182673833
010 045 log 60.1843998854514 7454.11417786079 0.972377643349189
010 050 log 80.1062102742529 7555.81226245889 0.973779639694332
010 055 log 89.0268037362471 7607.92804509101 0.970936029308028
010 060 log 109.62939978881 7648.63955066367 0.970192169279004
010 065 log 125.072261238666 7677.66121225397 0.968970890801149
010 070 log 146.200439081481 7708.72840757336 0.969013387709396
010 075 log 170.692482287504 7710.41334225775 0.968823561732335
010 080 log 193.954696175408 7694.4246022473 0.967965927888367
010 085 log 215.046747179909 7674.3216429852 0.967275961780908
010 090 log 245.035160615118 7612.82069105898 0.966931270888687
010 095 log 271.745098658929 7537.51745719261 0.965738736588625
010 100 log 335.398842374276 7349.64230369578 0.963030483339501

015 001 log 3.60895293495841 6431.66334852235 0.731964851722573
015 005 lin -2.28245793640614e-05 6474.60772849029 0.028811104879834
015 010 log 3.96251591987528 6576.61902604165 0.86858590368304
015 015 lin 0.000695346928570668 6783.06775517461 0.678117990231781
015 020 log 8.79040913448552 6930.71437151684 0.960471341966798
015 025 log 10.6946786018984 7125.95696769934 0.98161097559962
015 030 log 14.7717929758178 7269.78610060414 0.976040685790575
015 035 log 19.5633605596562 7432.57742066304 0.962245614621715
015 040 log 25.381987611231 7604.46880907388 0.967438463602382
015 045 log 32.3480367939272 7720.93648087475 0.964406694419473
015 050 log 43.248128331388 7907.39313199172 0.965659312172225
015 055 log 47.1808570467837 8006.25532508297 0.962933907392029
015 060 log 60.2099990280744 8119.06042855378 0.962169151148979
015 065 log 67.7929963438294 8222.80784857312 0.959862496563069
015 070 log 81.8469539942375 8320.80726182312 0.962330426462401
015 075 log 96.229414766199 8418.10844775148 0.963449117886691
015 080 log 109.809130857471 8494.17633485136 0.962023043046061
015 085 log 122.832348051702 8550.24041553403 0.961813518183117
015 090 log 139.779073936027 8611.93519962247 0.961995824588687
015 095 log 152.008885680346 8673.11155533748 0.961084717930405
015 100 log 193.205092423661 8695.79780059546 0.960800317542783

020 001 log -5.05776313633738 6600.40040623871 0.737389221699394
020 005 lin 0.000416000546211292 6559.62712060176 0.647914107246884
020 010 log -2.33556900831149 6688.39050838841 0.598745423618042
020 015 lin 0.000137445369167039 6825.02568787037 0.122770696737542
020 020 log -1.28333098392161 7043.67004614315 0.728643691882666
020 025 lin 0.000596153226190805 7234.62542891005 0.728871528544306
020 030 log 3.48887751854305 7384.01990385367 0.740820316287251
020 035 log 7.53978039362892 7551.68276835132 0.889295921120702
020 040 log 12.7834234010345 7728.30947753009 0.916823788283341
020 045 log 17.4689108772884 7864.89328015638 0.942510359061552
020 050 log 22.7128840032201 8104.91543972696 0.939834868747762
020 055 log 24.3068701633004 8225.27757537774 0.937107533060235
020 060 log 33.3578083015776 8375.7474664409 0.942628052576494
020 065 log 39.0026757297489 8498.07940558633 0.939704419931619
020 070 log 48.1413061459697 8642.87547786195 0.945263135396057
020 075 log 58.1649900204806 8781.66574167125 0.949940968785117
020 080 log 67.3668102187665 8898.78555461945 0.949221810597679
020 085 log 74.9436480612542 9006.90566423961 0.947539490094793
020 090 log 89.0193452806689 9096.08946071638 0.949864569708996
020 095 log 95.1827217871883 9214.97231516977 0.947796221934083
020 100 log 119.661865223818 9394.74437634953 0.950194079260865

025 001 log -6.5336074210872 6709.75917512755 0.510431511648017
025 005 log -3.58184925206907 6692.24847351093 0.392367602096497
025 010 log -1.95287782692479 6761.54110279516 0.276823625941435
025 015 log -1.661783813617 6897.98481491294 0.864413100239696
025 020 lin -0.000265479436748678 7073.29164514815 0.321428596111052
025 025 lin -0.000305379174223968 7269.01880358087 0.698622026101842
025 030 log 2.44286956540896 7415.32835685041 0.682748243287605
025 035 log -1.27376404857784 7647.53897820686 0.262890768414084
025 040 log 1.76674180672782 7840.19427235167 0.585561165240916
025 045 log 4.06496363020343 7996.45928111418 0.718479308979662
025 050 log 8.84158640124105 8239.8616463178 0.83955622679737
025 055 log 12.8708011514164 8337.72223704367 0.870921309642982
025 060 log 18.1717623722898 8522.71335951317 0.900509568061382
025 065 log 22.5804919769182 8656.85954935305 0.901988504471891
025 070 log 29.2292516602951 8824.79446612209 0.923299513724902
025 075 log 36.6441536690956 8988.22110747743 0.92632288094757
025 080 log 43.0724440583964 9131.98085329319 0.929769678970468
025 085 log 50.0016400061371 9245.30140809419 0.934278117450078
025 090 log 59.281602669776 9380.9740079094 0.932761468024981
025 095 log 65.0425000466885 9503.18692618884 0.934037810912362
025 100 log 81.230428390728 9761.44093378518 0.937101307308168

030 001 log 2.28576815682122 6725.80965891277 0.27599280078186
030 005 log -2.1198546029885 6769.63299848187 0.140605130320324
030 010 lin 5.57215079367161e-05 6814.39710075838 0.0378252104298932
030 015 log -0.191383681380206 6948.22099352006 0.0725726815434866
030 020 log -1.63160855557343 7134.50765205857 0.2731982464071
030 025 lin -0.000407019177057913 7307.64636898619 0.334501443209956
030 030 log 5.07455437263741 7420.40023734594 0.511858035136833
030 035 lin -0.000621689289683104 7665.50087383775 0.43686746860259
030 040 lin -0.000314287908727924 7876.97308068429 0.576702649191927

99

030 045 lin -0.000172532154761751 8049.20146198942 0.252730569415802
030 050 log 5.76483568843821 8279.80729526011 0.74348918267923
030 055 log 6.37572433477974 8406.13056713224 0.670571265296145
030 060 log 10.5712558098472 8600.02253413146 0.824792348740167
030 065 log 14.6898876116445 8736.33262602485 0.844303903082013
030 070 log 23.2622855930546 8885.88511028865 0.885160523472614
030 075 log 27.0534125335652 9081.70270688775 0.907759674466265
030 080 log 34.2484782082752 9218.50822433404 0.912675866243541
030 085 log 41.9955857368518 9324.73664807924 0.91593876492262
030 090 log 48.2949318322644 9487.87147815455 0.915907942064297
030 095 log 54.1656508797177 9608.83092136084 0.918291503605121
030 100 log 66.3822032247886 9903.62055980509 0.92135830176705

035 001 lin -0.000423148404761155 6831.91807939682 0.208599981239964
035 005 lin 0.00100102432300931 6827.75863684062 0.434648275213678
035 010 log -4.10266348169077 6933.52104549129 0.462447495308251
035 015 lin 0.000599074363155799 7009.83701218518 0.399357570718261
035 020 lin -6.9742052624623e-05 7173.73899769226 0.0849298559408138
035 025 lin -0.000219010824949414 7350.41773064728 0.216757541661639
035 030 log 1.80187688607117 7486.76706043844 0.486763907876539
035 035 log 2.44835012471628 7673.33549814303 0.286907682653732
035 040 lin -0.000458143988094727 7904.18609243386 0.4440425063339
035 045 log -3.29981569898961 8098.94886617002 0.597847169914762
035 050 log 6.19634490092489 8294.19887372492 0.749855524945571
035 055 log 5.77021664893331 8427.51998693256 0.66515954815397
035 060 log 5.38566395419809 8658.98744973316 0.634835572266953
035 065 log 11.7935839542149 8774.03728236406 0.780102263887186
035 070 log 15.7427903523603 8964.38894934884 0.835555355260966
035 075 log 19.460821034256 9159.78401035818 0.868024288111227
035 080 log 27.3447190504734 9289.73412043776 0.884446734111359
035 085 log 32.1697546053894 9422.26410114521 0.898083585248311
035 090 log 38.5411766732404 9584.18260991245 0.896804255769585
035 095 log 43.9411132571351 9708.77768902446 0.900622359766575
035 100 log 54.0398331966698 10024.1867268159 0.902090885492067

040 001 log -9.08731718901677 6991.86348015694 0.644555686496515
040 005 lin 0.000930597106755527 6910.25959186209 0.300459078999694
040 010 lin 0.000572060559432907 6972.23686451397 0.396507275719785
040 015 lin 0.00104376934415499 7077.73216550001 0.469155955484522
040 020 log 4.65226750492852 7190.25129268135 0.587591547050754
040 025 log -5.84890022416496 7449.19357971531 0.630759560232494
040 030 lin -9.41700232337558e-05 7543.78038639344 0.0828513240205908
040 035 lin -0.00042121989754619 7734.37088655555 0.313721438305966
040 040 lin -0.000645155228174868 7934.07411512897 0.402495333664088
040 045 log -6.98474622823186 8158.13138865108 0.74592562067474
040 050 log 2.27898443399898 8349.95384281728 0.57696930527902
040 055 log 2.62939949002499 8475.24734304504 0.306807402780744
040 060 log 1.32907333566579 8712.07062232645 0.244007176771047
040 065 log 6.19619592477517 8839.262335805 0.630838041217193
040 070 log 10.5685884748667 9023.84903906679 0.78114831090891
040 075 log 14.89875319858 9213.18983987514 0.816072926972559
040 080 log 20.7336003301895 9360.75870708414 0.864581949641763
040 085 log 25.8265439779917 9489.78863905009 0.863351997049491
040 090 log 33.1106578546508 9643.04615636182 0.868542475504075
040 095 log 39.0165374215907 9763.00965523603 0.878970040541712
040 100 log 46.058363638873 10105.6659668855 0.878329290742871

045 001 log -2.54682806421502 7017.28140402302 0.208207399841516
045 005 lin 0.00355256003571351 6965.30466382011 0.758782282404377
045 010 log -2.90056190464269 7081.45281559291 0.408314934796411
045 015 lin 0.000624362481252578 7147.08137168256 0.52278135513597
045 020 lin 0.00067211065103502 7288.05437635185 0.523778843008695
045 025 log -5.38884540442031 7499.42574035301 0.622575460328842
045 030 lin 0.000558476048580805 7583.8906712963 0.21044903893436
045 035 log 0.606747462350354 7762.33436111546 0.124492044362467
045 040 lin -3.14281343758514e-05 7960.12451257012 0.0349494701432457
045 045 log -4.96605631736839 8167.98982737105 0.476287453452017
045 050 log 1.31432480894324 8382.49365306972 0.227310062594114
045 055 log 5.3279875811241 8475.00557754391 0.593917543437955
045 060 lin -0.000458652611112595 8747.27114634569 0.472496946416018
045 065 log 4.39756407648789 8872.89387143889 0.462900837830191
045 070 log 4.85301370664631 9089.90530702585 0.496241046456412
045 075 log 15.5733621523513 9221.39675421703 0.869803524903268
045 080 log 20.324085030288 9376.9946096379 0.873940620134424
045 085 log 25.1100609560611 9507.59559031935 0.863686259729847
045 090 log 30.9074486479741 9673.32120788567 0.867857938845134
045 095 log 37.8234558350536 9783.14947362038 0.878175021764183
045 100 log 45.7401923111243 10117.6056986543 0.875611256713778

050 001 lin 0.000367557277777791 7083.30129269136 0.0842162942665508
050 005 log 13.1827851571746 6971.16279687782 0.700450680925255
050 010 log -2.7354099515505 7176.90214103582 0.192883389986663
050 015 log 4.16151846848687 7203.44025110232 0.678694553644156
050 020 log -3.0912273510666 7397.57307057011 0.238044071464356
050 025 log 0.655235082195775 7512.77533378076 0.079286551627664
050 030 lin -0.000539268039682417 7650.47235627778 0.354375662269829
050 035 log -4.87293658248083 7861.17246416575 0.580104160444393
050 040 lin -0.00102642461471847 8014.20154866667 0.590319115509189
050 045 lin -0.000576560242064794 8168.5671598695 0.429817993472243
050 050 lin -0.000754705252575445 8429.24007465896 0.733997854333163
050 055 log 1.53342620980541 8535.25944136272 0.174495708582368
050 060 log -3.82096642348488 8801.9388051002 0.488817150496304
050 065 log 2.42792216095271 8912.4876503803 0.207809431078043

100

050 070 lin -0.000457219273430961 9158.06609276738 0.395312840864453
050 075 log 1.68394728512054 9364.8528299309 0.158640695439375
050 080 log 15.67253785563 9437.02872225017 0.800826314622109
050 085 log 20.8380071165398 9562.1542396108 0.861075830742437
050 090 log 29.2848607598562 9704.49525194704 0.874674205906783
050 095 log 32.3335606572713 9846.04423850717 0.882761912298298
050 100 log 36.6291323583146 10214.4695520546 0.865762171314422

055 001 log -9.07362277787508 7216.89882292568 0.502331045071887
055 005 lin 0.000818223619047801 7132.5243561164 0.398114517908982
055 010 lin 0.00111032188311562 7200.67260500001 0.382381909327301
055 015 lin 0.00149688613131191 7287.97915344445 0.612127080121758
055 020 lin 0.00091048676118345 7419.76839994444 0.28659905132621
055 025 log -0.742698520133174 7575.32777891922 0.11431704784535
055 030 lin 0.00147039280952315 7677.96340853969 0.823454475999102
055 035 log -6.71107162518865 7920.78393774329 0.67189516706844
055 040 lin -0.000280894997114124 8040.72393588889 0.187480772717254
055 045 log -4.79909261351914 8238.07406341224 0.706876633127785
055 050 lin -0.000916749507936835 8457.60782242681 0.590946167252119
055 055 log 7.80504309896072 8503.34924601636 0.810848292820825
055 060 log -6.07790379570925 8843.95245731677 0.765459160360758
055 065 log 3.21675510198533 8925.38625682808 0.255251688641482
055 070 lin -0.000601578519936119 9177.24201418415 0.449999015510308
055 075 log 9.1434294460098 9315.73732389312 0.6603854227479
055 080 log 15.3740040171253 9454.3565486221 0.786444932659937
055 085 log 21.4850269755657 9571.62670813119 0.859545126159106
055 090 log 26.2111052429737 9744.39768078243 0.851987355585284
055 095 log 29.4936371986993 9884.28034815616 0.869574461810396
055 100 log 34.7141157567417 10242.7872037197 0.861540518323994

060 001 log -10.3741650878386 7291.98718892663 0.558562039059713
060 005 lin 0.00111919366269906 7201.88803765784 0.358698023336097
060 010 lin 0.000234832658079071 7280.83791244731 0.235577962112023
060 015 lin 0.000901784006974914 7364.57940831481 0.242467902751756
060 020 log 9.84490898511848 7400.45622753368 0.564190922181853
060 025 log -7.07628034511 7694.1591078934 0.40987676991676
060 030 lin -0.00117444635135606 7753.61444320883 0.599412072409415
060 035 lin -0.000869779111111164 7917.75249960494 0.485141542677795
060 040 lin -0.00058039072222213 8090.78687291358 0.316759905060879
060 045 log -5.55275236714411 8282.50555606111 0.551558893301385
060 050 lin -0.000261583726189534 8483.82891946031 0.181406477836163
060 055 log 1.60782476036351 8586.28184649407 0.44960169344592
060 060 log -6.61909560238213 8872.59894239166 0.722062825914419
060 065 log 1.48439826172295 8963.23508624453 0.113440262358376
060 070 lin -0.000186657654475598 9195.3930020904 0.215323231098713
060 075 log 10.0481433416226 9325.8368017361 0.678573627096322
060 080 log 15.1825742185588 9473.0409918058 0.756945393896195
060 085 log 15.6509778122823 9638.76497601578 0.8047485456419
060 090 log 21.6430831564155 9799.56219424493 0.835151917546583
060 095 log 26.2319940231094 9926.44269958573 0.847547903675341
060 100 log 34.1506992092389 10260.2476726269 0.849889663339178

065 001 log -9.63329907567891 7334.3695994431 0.470590710892354
065 005 log 12.0362005064886 7150.05892634007 0.651545994790725
065 010 lin 0.000496486569821835 7339.82300968207 0.261797337865327
065 015 lin -0.000249325773922866 7433.94425232498 0.348554198186113
065 020 lin 0.00253774416907195 7533.00357990741 0.92161144289063
065 025 lin 0.00136834786171263 7674.45445224074 0.517880392541942
065 030 lin 0.000700991581287529 7788.94634620371 0.448347491961576
065 035 log -4.4520258893106 7998.16525436531 0.503076092700277
065 040 lin 0.000798919413186942 8117.33220266665 0.643199019395439
065 045 lin -0.000567653292905184 8277.1249900952 0.541124069690103
065 050 log 1.91546700792665 8498.69095420897 0.178948898429803
065 055 log 2.40151176160295 8608.34810657185 0.24343961360536
065 060 lin -0.00124918403958707 8847.96717182775 0.835188040463195
065 065 log 1.9016559869073 8982.06583972735 0.143294122977051
065 070 log -6.26757250514044 9271.47582152609 0.628408709052679
065 075 log 5.7852800195131 9381.93168750318 0.5446023823935
065 080 log 9.7123252950525 9537.77787632108 0.6793309286774
065 085 log 10.4152452626295 9699.16050884216 0.666112582770809
065 090 log 18.9434337819579 9839.04952803441 0.805803417217511
065 095 log 20.5694133275134 9989.34064967072 0.808818452632372
065 100 log 34.3764165994348 10269.1568387056 0.861397504690839

070 001 log -13.9679862479589 7450.19954231528 0.480662429075246
070 005 log 10.7206827163827 7252.65664553169 0.686673023740122
070 010 log 11.0462278230769 7342.17052141196 0.672249763600156
070 015 lin 0.000562489712602442 7513.08841564815 0.15793195077893
070 020 log 10.0537995998824 7547.27029118582 0.659288439008268
070 025 lin 0.000775465888409181 7764.28935696296 0.238420995490438
070 030 log -2.37389012394645 7898.35599723005 0.137545815458869
070 035 lin -0.000772758090565185 8029.65785910387 0.410580776419576
070 040 log 1.23758822434686 8177.98159079486 0.133396868895562
070 045 log -0.834974822435948 8335.3757585351 0.126246810147048
070 050 lin 0.000367838021007531 8560.26664238656 0.29317537972708
070 055 lin 0.000420371273872064 8669.116787635 0.29108701822838
070 060 lin -0.000419637033256746 8878.18598408918 0.271088840100895
070 065 lin -0.00100214501587351 9041.27901640917 0.628539954093186
070 070 log -3.47872023085362 9274.5247103251 0.312081261298047
070 075 log 6.6205660079946 9397.66623176314 0.600476441167693
070 080 log 10.2128589676488 9554.62323460109 0.799381645090382
070 085 log 10.9096144970094 9716.8906451811 0.732980362776066
070 090 log 16.0234077799956 9883.24354572266 0.881210850571832

101

070 095 log 18.0506875409959 10030.6313533365 0.777983133828272
070 100 log 9.65919718563004 10506.3514564913 0.513268163508939

075 001 log -15.1519062144605 7540.85389998015 0.581926643475933
075 005 log -9.95303504077414 7520.1928814902 0.757681067571623
075 010 lin -0.000638950706348817 7533.84386613403 0.355273963404095
075 015 lin -0.00225764037698507 7623.19285379189 0.551734666624417
075 020 log -7.12785754255058 7795.82918164912 0.409653734616279
075 025 lin 0.000698836100859196 7852.8545093879 0.662425481229277
075 030 lin 0.0025140594404767 7937.70389397883 0.824962482326785
075 035 lin 0.000145827833331625 8099.01904466668 0.0736648445251391
075 040 log 5.11862441213899 8213.85619341745 0.625209593769872
075 045 lin 0.00118302451346788 8384.24795931482 0.604387024089761
075 050 log -2.57082649303354 8634.38982793366 0.31870949572648
075 055 log -9.62150510028724 8804.75085144055 0.702963483835526
075 060 log 1.27086505824903 8906.87423375189 0.109440082926527
075 065 log 9.4110063556265 8986.02951625914 0.670954107601235
075 070 log 5.23637198652574 9229.17088626146 0.526466654497208
075 075 log 3.6221723380345 9449.62141067691 0.373193438483142
075 080 log 0.825179340252055 9662.36785485129 0.115356301327869
075 085 lin 0.000347221801587939 9833.11273015167 0.184354703718613
075 090 log 7.22079756139674 9979.35904295473 0.734672942632118
075 095 log 10.9558570748121 10109.8751561399 0.746096211065318
075 100 log 20.084605452087 10429.8444807665 0.783637453402629

080 001 log -32.9140492732532 7757.93626913136 0.694522471530906
080 005 log -7.50016417886973 7564.67956842711 0.594687145620669
080 010 log -3.15248140307387 7632.15079315571 0.210164453778767
080 015 log -10.4393771451562 7780.6248602385 0.696666396955945
080 020 log -7.93634609721397 7882.8997420833 0.415375910956028
080 025 lin 7.4356174604098e-05 7934.37961164726 0.0311089972748325
080 030 lin -0.000392322475525612 8039.73036448769 0.160362422664613
080 035 log -5.96073900741089 8230.10991802147 0.338529838202146
080 040 log -1.90943492101159 8339.40383131929 0.131197537256977
080 045 log -2.33001185092104 8473.5046625223 0.141453143121704
080 050 log -4.82293821297622 8711.7151095489 0.282212450035393
080 055 log -3.8064330795305 8811.33383155937 0.247756563320783
080 060 lin 0.000162032330964169 8958.10926946986 0.143550493338512
080 065 lin -0.000319991461759625 9114.30895477777 0.132472569808012
080 070 log 6.80578049418519 9252.34444219729 0.691379924507711
080 075 lin -0.000234007224343858 9518.40068663422 0.159766058966081
080 080 log 5.13943179084528 9652.99385762202 0.424174557800312
080 085 lin 0.00113899936904808 9854.54811374603 0.634086091977238
080 090 log 8.26733597548987 9995.77863703039 0.662680891868777
080 095 log 3.55644653868997 10197.6565367993 0.481644733621823
080 100 log 10.0483869266308 10538.1900772363 0.672350361589012

085 001 log 3.28020581867751 7518.88808806193 0.111387266628501
085 005 log -11.6021198208802 7681.71783325541 0.75898130475618
085 010 log -24.4995167576594 7912.15132753581 0.628528696905083
085 015 log -34.980168500225 8087.41146763809 0.887573201644067
085 020 log -12.535132227515 8016.06605196518 0.885945249102469
085 025 log -10.1100804249133 8120.3325812542 0.773050776915354
085 030 lin 0.000153616678939806 8135.19410407953 0.191986867817221
085 035 lin -0.000484271734128396 8273.4427582575 0.191789411243387
085 040 log 9.93713287164483 8330.54664530197 0.634815015779665
085 045 log -3.87062621312823 8573.08111246241 0.415424609734125
085 050 log -3.97936926201353 8773.82404398061 0.229454479136204
085 055 log -2.30783920937466 8865.10797513034 0.203758918440249
085 060 log -5.05556353714431 9068.34953410817 0.369975995562763
085 065 log 4.67689854510359 9126.43706176385 0.368657943554267
085 070 lin 0.000386061834295591 9358.36023079629 0.138518198498046
085 075 log 5.54065501981797 9513.48782891688 0.436998692746458
085 080 log -1.4163421633077 9750.07016855524 0.131911513697877
085 085 log 7.97237076060375 9828.16866663074 0.602211489639103
085 090 log 13.000949478212 9987.43336338626 0.869548140597995
085 095 log 6.66382472602344 10205.8684976658 0.41118466982009
085 100 log 11.6173306620969 10550.7744994314 0.650794028547713

090 001 lin -0.000578399539870875 7621.95226586829 0.0898035068464158
090 005 log -30.9124424712959 7939.60238537519 0.972767608109004
090 010 log 7.72975687473599 7727.28127616768 0.246929177840566
090 015 log -22.8225818566287 8079.99232198047 0.826124858213079
090 020 lin -0.00175304914304614 8023.46688412226 0.441074915149349
090 025 log -10.220222229254 8234.04315903052 0.431600263290877
090 030 log -5.91732208332797 8296.71873600084 0.376728596029771
090 035 log -17.2174155819623 8533.94326792228 0.857713870198285
090 040 lin 0.000225943194323598 8523.72859218519 0.0428479161825458
090 045 lin 0.000956061011903485 8638.3246957672 0.348568705464902
090 050 lin 0.00105707848412693 8826.87551966843 0.308310835549718
090 055 log 5.31436933623246 8897.13808135895 0.33225758473447
090 060 log -2.1210456362072 9123.66758292533 0.13436992534028
090 065 lin 0.000780445756371816 9243.0238487963 0.246585640820971
090 070 lin 0.000300747420394059 9428.42391714815 0.163127742307562
090 075 log -6.01255756025233 9675.53018119225 0.511992287779274
090 080 lin 9.7165531400969e-05 9794.40947838164 0.196902370124713
090 085 log 6.83509761192885 9888.79590561282 0.512764723515936
090 090 log 12.5629959898316 10038.4405009201 0.74755016384527
090 095 lin 0.000533202750001351 10300.6470045185 0.195916150944476
090 100 log 11.4407428490535 10589.6398203081 0.627626588588392

095 001 lin -0.0036653550595258 7683.08632351192 0.569183946556647
095 005 log -40.236908641064 8072.01792470332 0.8516908529109

102

095 010 lin -0.00235632368953171 7853.98749426965 0.391473108915195
095 015 log -22.8696687589919 8133.72317708909 0.56578347410512
095 020 lin -0.00421277171768461 8104.82411062924 0.816516545588685
095 025 log -24.5080041276547 8412.55850177045 0.721201697328905
095 030 log 5.0263019526744 8262.54127776055 0.44875877530777
095 035 log -11.509008436814 8549.30711377539 0.678535537141023
095 040 log -16.4673497989779 8734.78525667058 0.615671084291452
095 045 log -5.38193374590655 8764.19503970952 0.529457158624621
095 050 lin 0.00273347063095172 8884.18355143916 0.548125668120633
095 055 lin 0.000377593539682031 8998.0099551993 0.0760835829873701
095 060 lin 0.00108191486111141 9162.07062986111 0.313030828722357
095 065 log -6.34600355843781 9363.85177085349 0.419283486887843
095 070 log -4.57317340003826 9530.36079065143 0.673386609401247
095 075 log -8.99177752832117 9753.23306075808 0.417991728375832
095 080 log 6.90061432353715 9789.49231687158 0.357060398747723
095 085 log -1.2141821605451 10010.2012551895 0.359397435244265
095 090 log 8.98200390689335 10118.0515452943 0.431373658341627
095 095 log -2.23877929961073 10368.6806032699 0.11492834966581
095 100 log 8.89320563625236 10653.0260075154 0.450928542191188

100 001 lin -0.00093459434098573 7651.82761826105 0.135707089320615
100 005 log -32.7680257849336 8000.5556034004 0.905344514577028
100 010 lin -0.000189934326531632 7857.46107689797 0.138778701412203
100 015 log -32.6609019755858 8230.69069322415 0.910073980582548
100 020 log -31.5106899149185 8356.97023460246 0.813806642576181
100 025 log 1.64699648130601 8191.17342473732 0.0861218457961218
100 030 log 2.56071445850406 8293.10784913006 0.0879708767028745
100 035 log -11.3713192709102 8562.52183748079 0.633468204504339
100 040 log -20.5430145017489 8782.74794512278 0.870942921895185
100 045 lin -0.000670170685046206 8737.19134416876 0.647376840078664
100 050 log 12.540701906143 8805.25106491244 0.419511899359629
100 055 log 7.50393499782559 8954.84955466905 0.294784130119446
100 060 log -22.6890930421763 9393.57563363777 0.732930304818632
100 065 lin -0.00147549169398698 9345.23657034607 0.501285146674655
100 070 log -7.84704012089018 9587.57166908485 0.442197827983684
100 075 log -11.1188244079306 9800.37570292439 0.375142370672108
100 080 log -2.58623232146157 9903.07046498813 0.138709336683192
100 085 log -21.7448776578873 10227.1525773655 0.802213036574159
100 090 lin -0.000322001736046614 10235.5399068195 0.108022264550961
100 095 lin -0.00208702515392303 10400.5954542593 0.370897137161457
100 100 lin -0.00172149015584714 10782.380102 0.41313466531188

Appendix 5.2 Usenet-Based System

001 001 lin 87.0413087282309 -22960.1274048889 0.999833243887559
001 005 lin 22.5890586775194 -28458.0304589998 0.974872316648905
001 010 lin 24.6407152705935 -34866.8769305185 0.969492742929493
001 015 lin 26.9493570097234 -42405.7614935184 0.96118215943756
001 020 lin 23.3334266494088 -27105.3866604074 0.976560072881476
001 025 lin 22.0042616358754 -26055.0310620371 0.974123341140279
001 030 lin 24.5154216690055 -27241.0532721295 0.967042623594582
001 035 lin 36.9522963560087 -69927.1375193334 0.930244460887441
001 040 lin 23.012835740803 -18315.6674001664 0.973349050796604
001 045 lin 22.4518421530274 -11924.9563875556 0.980350455146813
001 050 lin 22.2172841874928 6962.48432027778 0.996242276436612
001 055 lin 20.4542153235159 -725.769104611085 0.998729058902352
001 060 lin 19.9361014500489 13840.0850642036 0.996896776189267
001 065 lin 21.3635758860674 2980.21705207389 0.998255633201801
001 070 lin 20.7210171896647 8229.71394507409 0.999295868155839
001 075 lin 22.9454795402578 12572.2163527406 0.999476841492287
001 080 lin 22.7448494897624 14084.0505534815 0.998883349507683
001 085 lin 21.5755386095279 11493.572838759 0.99976575281058
001 090 lin 21.9063183562855 13957.5293950927 0.999305422329458
001 095 lin 21.9789147672641 15616.6791073335 0.999190466889469
001 100 lin 34.4736091161017 9254.63796183339 0.998387920421606

005 001 lin 74.7815962427915 -20429.8779577224 0.999080531839791
005 005 lin 22.9114057840645 -29206.3149248149 0.976337562701961
005 010 lin 24.0161438924055 -32304.4793541112 0.975677559030971
005 015 lin 26.6773071876849 -41034.8225647037 0.963220824222764
005 020 lin 22.8730605304704 -25085.1227951111 0.978685532215457
005 025 lin 21.0904305616849 -22805.6536827037 0.981004346061459
005 030 lin 24.7600958947172 -27746.5723321111 0.966216292219486
005 035 lin 36.6838244549332 -69261.8541572595 0.933667100892443
005 040 lin 22.5195933722922 -17476.4525715 0.966285707008876
005 045 lin 22.016824900709 -10022.5941049629 0.988972668065007
005 050 lin 22.6734967092087 5299.82496462969 0.996285991562923
005 055 lin 20.4619598672852 -620.007212814846 0.998872462898766
005 060 lin 20.0578793816479 13751.6202575558 0.997196703152038
005 065 lin 21.4395800418535 2968.70564338889 0.997656551384386
005 070 lin 20.9120447231337 7544.21654351855 0.999493562443265
005 075 lin 23.0745425831148 12137.2962218332 0.999512720052707
005 080 lin 22.7952095358456 14128.8215054444 0.998830894768666
005 085 lin 21.6751312909199 11243.2402108333 0.999834666480006
005 090 lin 22.1159698250642 13471.2585172778 0.999419041207388
005 095 lin 21.9298109750606 16301.2132836668 0.998965360915201
005 100 lin 34.5917611447369 8823.8821922965 0.998418976949777

103

010 001 lin 70.3308598820757 -11762.3939581665 0.999236020499073
010 005 lin 21.5712731519502 -23883.0879618333 0.983540564543229
010 010 lin 23.4982195301202 -30394.7198762962 0.977931890193447
010 015 lin 26.2307603060382 -39744.1182877222 0.960765646551069
010 020 lin 23.0077409070269 -25373.5983673702 0.976156253564751
010 025 lin 23.2276966310572 -29719.704321037 0.965281583059707
010 030 lin 25.2573991519769 -29427.644011111 0.958199554111294
010 035 lin 35.5025865677076 -65890.2856194074 0.925758143282611
010 040 lin 24.7901281369252 -23969.1664912037 0.95948793023157
010 045 lin 21.7300992555423 -9261.06382879634 0.991768025902517
010 050 lin 22.5657224006318 6138.05281375934 0.997921458572531
010 055 lin 20.238804982973 994.662757370475 0.998823229993569
010 060 lin 20.4590067531926 12506.5972058334 0.997712523333982
010 065 lin 21.824678105981 3142.5376563148 0.997872565789107
010 070 lin 21.4497397400693 6465.84094133342 0.998880264923364
010 075 lin 23.2215439077463 13067.4705366852 0.999308634366783
010 080 lin 22.7861446191775 15396.1242966667 0.999140418414582
010 085 lin 21.9266681117309 11142.1909506111 0.999748326681937
010 090 lin 22.2001292381008 14241.3982442037 0.999537707827235
010 095 lin 22.1994756514582 16034.1723616109 0.999782126135316
010 100 lin 35.162075124936 7197.8673636298 0.998048357947532

015 001 lin 71.9178914108401 -5894.676230426 0.999426989248021
015 005 lin 20.3792427414793 -19240.8664885372 0.985347718168066
015 010 lin 21.1270996836313 -24173.8369490555 0.978478719067787
015 015 lin 23.1597150415647 -29703.4609164075 0.970698997611656
015 020 lin 20.6065659886917 -17678.0904462962 0.981997561978108
015 025 lin 21.6096502691087 -23984.7560928518 0.976967532370655
015 030 lin 23.7805956103468 -24652.0766415187 0.974555936961848
015 035 lin 24.4075128183002 -29393.8804381238 0.932838761359776
015 040 lin 23.2463670794925 -18441.5928746296 0.973371329263019
015 045 lin 20.7537251879815 -5269.52327587039 0.996143366590246
015 050 lin 21.9574210876654 6599.43173179649 0.998137736206312
015 055 lin 20.3767023718057 2157.16888281479 0.99936222378483
015 060 lin 21.0957522918968 12338.7335567222 0.997570733343862
015 065 lin 23.0395977464055 962.338387888682 0.995771201786111
015 070 lin 21.6124684206515 8389.99216816676 0.998965058051519
015 075 lin 23.6172188387571 13363.4543705185 0.999320590038003
015 080 lin 22.5286852419887 17402.8247733521 0.998720288628632
015 085 lin 22.5295754099877 11343.4428137223 0.999373059546968
015 090 lin 22.7625729245861 15134.0216333517 0.999438435871637
015 095 lin 22.9020689481681 16770.8018282777 0.998930119295475
015 100 lin 35.7228977020303 7081.88474033322 0.99792767402645

020 001 lin 75.1247773286362 -8613.14754590759 0.999821812382851
020 005 lin 20.6509784595957 -18884.9746153518 0.977058154954611
020 010 lin 19.8395260350098 -20284.2533377962 0.977343182219039
020 015 lin 19.9831638866154 -20711.1146099444 0.968635776099017
020 020 lin 20.1926412894029 -18419.4590130927 0.984911972184628
020 025 lin 19.8316088732424 -18573.2686563333 0.978603559762158
020 030 lin 22.7389864002287 -20962.7216870554 0.980965739534406
020 035 lin 23.6339396892376 -29727.6520264814 0.932784449814042
020 040 lin 24.1562367119798 -21059.8440402221 0.962854347355322
020 045 lin 21.2332866585486 -7956.01208620374 0.985805716735921
020 050 lin 22.5163708464057 5315.11615879636 0.996997965511531
020 055 lin 22.8008928390431 -4909.73688057414 0.995457135071107
020 060 lin 21.8400770368603 11207.6045637963 0.997537510504173
020 065 lin 25.2747497472287 -4619.97753605555 0.991181925348102
020 070 lin 22.6668215028903 7231.50474522232 0.998485164054842
020 075 lin 24.293609159215 13615.5005982223 0.998302347150575
020 080 lin 22.1254071913432 20116.6057878704 0.997577367496421
020 085 lin 23.6354670959295 10427.5541521296 0.998930730940091
020 090 lin 23.8907048747061 13375.9846661479 0.998844297772537
020 095 lin 23.3188844627569 18028.155131611 0.998328247468084
020 100 lin 36.5186382742713 3287.9025055556 0.998190109933325

025 001 lin 77.6525602760449 -6587.69653231424 0.999659777785668
025 005 lin 19.6359995299882 -14422.945264463 0.981644424464748
025 010 lin 17.5015324559433 -12395.5264861482 0.990007783993057
025 015 lin 16.8502112263052 -10389.4335804999 0.984790052997682
025 020 lin 18.5484715038624 -13778.575047037 0.981796759521984
025 025 lin 19.0668868826299 -16409.0182074999 0.979406850638952
025 030 lin 21.8141191587307 -18698.6524692964 0.976557809826618
025 035 lin 19.3170942968206 -15123.2679159258 0.95961485531628
025 040 lin 21.5719213146101 -12018.1358659074 0.98353599915785
025 045 lin 22.4640887199943 -11298.7485617778 0.98523664126636
025 050 lin 22.8134916314853 2671.40373414815 0.995447248984152
025 055 lin 25.9138007381631 -13317.4471707779 0.988569240972601
025 060 lin 23.1691480609006 7561.9392482409 0.999092126746638
025 065 lin 27.0324606511933 -8965.94076744423 0.990295016241533
025 070 lin 23.5477520134142 4920.29399155545 0.998572785130777
025 075 lin 24.5972618435389 12188.0542825002 0.998996102808289
025 080 lin 22.8692241707626 19679.4885573889 0.995994182778382
025 085 lin 24.9426044941813 7820.7680861851 0.998890938970484
025 090 lin 24.9558663461143 12541.0240990184 0.999026139131145
025 095 lin 24.5148427789464 16118.1888746479 0.998568425940546
025 100 lin 37.0966980954027 1250.54717399963 0.998864434159166

030 001 lin 80.0199468710466 -9446.11220096244 0.999609661900025
030 005 lin 19.0808160980407 -11088.5209826482 0.986216266369886
030 010 lin 16.2164062951349 -8334.97854594437 0.99247397059664
030 015 lin 15.4953687336535 -5632.33811557409 0.993061997215528

104

030 020 lin 16.7651382585649 -9708.09844449995 0.980073761905553
030 025 lin 18.498235483779 -13757.1687519074 0.9884662114552
030 030 lin 17.6845281382196 -6837.07658753697 0.990910209640594
030 035 lin 16.7050550109632 -6483.27974583319 0.974806551637394
030 040 lin 21.336544851968 -10089.2661146851 0.993929938029434
030 045 lin 21.4959854004851 -9408.86823975925 0.983130332934079
030 050 lin 22.9098537539231 1918.13863162938 0.997066090878847
030 055 lin 25.5002018551731 -12408.6707516666 0.984414196854998
030 060 lin 24.4826125145918 3552.13374512989 0.998062838127362
030 065 lin 27.0234017936556 -7476.7711974073 0.993747059002828
030 070 lin 23.900171275252 5555.19856596299 0.998375466143531
030 075 lin 24.8549713089355 12709.7364338148 0.999020193697105
030 080 lin 23.2251739115621 19594.3913936111 0.996184345815251
030 085 lin 27.1682998296241 1676.00934172206 0.993682606843445
030 090 lin 26.0673002485036 9960.32942411123 0.9986587125286
030 095 lin 25.1950803627083 15282.1900683148 0.999174359038769
030 100 lin 36.313002250399 4805.90986538905 0.998552729743006

035 001 lin 84.9265716447444 -10126.1912295746 0.999604633759857
035 005 lin 18.8528471424072 -9399.99494775927 0.990860640829129
035 010 lin 16.4853582983165 -9660.26631185188 0.986260147311834
035 015 lin 15.9462464998062 -7207.3876513704 0.98790027022074
035 020 lin 16.3634233750431 -7987.66549257422 0.982082125983518
035 025 lin 16.7727487211515 -9507.9382153334 0.990020957499961
035 030 lin 17.9804147405604 -7859.82308574073 0.992141598362432
035 035 lin 15.5244787113716 -1779.90872505562 0.993553445055255
035 040 lin 23.065212484133 -17607.1317562037 0.961149741139474
035 045 lin 23.6918156288249 -15749.1857235926 0.973119037311198
035 050 lin 23.5239459071783 -555.150706611326 0.995534991526701
035 055 lin 28.5796580225103 -22326.1116484814 0.97649192383138
035 060 lin 25.8997775111989 1701.73596342583 0.992842957119881
035 065 lin 31.298814940957 -18890.6473794259 0.975921182684014
035 070 lin 27.8855773479117 -6738.31803901831 0.982497456849883
035 075 lin 25.9035493618884 10940.4279049627 0.999107406287602
035 080 lin 23.8268064037184 18650.5477394258 0.998075390739627
035 085 lin 27.358836703013 4207.89376799995 0.992000519662508
035 090 lin 26.5911108274268 10828.2975316485 0.998619201861247
035 095 lin 26.9920277964844 10737.7726955183 0.998486005569119
035 100 lin 37.2262527820481 444.886987481557 0.997471106286904

040 001 lin 86.4976104824727 -5722.45022094488 0.99923774387215
040 005 lin 19.8165316047609 -12153.6013169629 0.987450756574088
040 010 lin 16.4687248451164 -9617.57875581486 0.986952124398726
040 015 lin 15.6645443893985 -6213.59328942596 0.990794948888914
040 020 lin 15.7993602744536 -7212.6147466297 0.989788092238001
040 025 lin 17.0628284183617 -10509.1376412591 0.986993283737692
040 030 lin 17.823103570354 -7590.93417429616 0.990325244789871
040 035 lin 15.7007628676169 -1912.3595715 0.995042059083523
040 040 lin 21.6446737969983 -12415.7030153521 0.98946972982118
040 045 lin 23.0373361700584 -12742.9201794999 0.981488346465496
040 050 lin 24.371284282159 -2760.87516420381 0.996596459777749
040 055 lin 34.8913499038359 -40318.1312468516 0.97433846114075
040 060 lin 30.4361326180351 -13807.9815935184 0.98047182926387
040 065 lin 38.5263624454856 -44304.1940729444 0.952490865021779
040 070 lin 32.8130979721525 -21251.6763287039 0.976220342377318
040 075 lin 26.7371467782232 9701.37915607422 0.999260106391315
040 080 lin 24.6631266791854 18331.1184966112 0.998202675206365
040 085 lin 29.418563775493 -1471.27288481477 0.993018576476274
040 090 lin 27.6474960297924 8802.27135690753 0.998579411978262
040 095 lin 28.7471575590647 6387.22130109239 0.99698328231138
040 100 lin 36.7352734498369 2067.71397477784 0.996994129130136

045 001 lin 86.8644920948899 -1814.74710059306 0.999159094575842
045 005 lin 20.1845948175334 -12149.3101063704 0.992483076720705
045 010 lin 16.731599247341 -9782.15716229629 0.986521393149603
045 015 lin 15.4539952463379 -5251.3394570926 0.993003783915645
045 020 lin 16.0527546229057 -8080.59021670373 0.986712256825596
045 025 lin 17.9297310921214 -13028.7583957592 0.980300292271873
045 030 lin 17.873153689025 -7314.81598862962 0.988964565002381
045 035 lin 15.9057710192258 -2495.9919509444 0.993844864334188
045 040 lin 22.1551095238468 -14433.9459760185 0.985803486488935
045 045 lin 23.3898350255609 -13311.911818926 0.969960939485876
045 050 lin 24.7593457772806 -3292.10187005549 0.99725792890157
045 055 lin 35.8543585990799 -45833.0033317406 0.947835686593563
045 060 lin 31.7036291097626 -17509.7195956109 0.985304923810582
045 065 lin 37.7080864994972 -41899.344007389 0.944464249949699
045 070 lin 30.6173668933139 -12480.2986968334 0.990439694011278
045 075 lin 27.8243351009514 6382.22346970378 0.998779777957296
045 080 lin 25.4652671509702 17132.4383704817 0.998205124613364
045 085 lin 31.3539002878658 -7178.76154233326 0.988466372903642
045 090 lin 28.9407288614721 7595.1880642407 0.995230720084597
045 095 lin 33.0154144872078 -5867.16284500004 0.982923464180764
045 100 lin 37.1750639376922 -389.537507481436 0.996195316781246

050 001 lin 94.005235792571 -7904.87954981514 0.999431008025618
050 005 lin 20.9552262971171 -12774.3443670926 0.992538119673079
050 010 lin 18.5012899923663 -15748.1226920186 0.975567415109614
050 015 lin 16.4168717097741 -7804.56995205539 0.989472565257986
050 020 lin 16.2622282874384 -8504.11130479636 0.989272466361465
050 025 lin 18.0698481118771 -13018.6524976852 0.985566057556294
050 030 lin 17.66592726131 -6679.14834735176 0.990406914656108
050 035 lin 19.7740398115325 -11396.7055879999 0.953099067340413
050 040 lin 71.54428893564 -165716.074340389 0.904355301927566

105

050 045 lin 68.9968689396414 -160856.856222945 0.88428844373171
050 050 lin 35.3264283267874 -37312.1118311482 0.974732472214071
050 055 lin 57.0116560403971 -111104.25983187 0.923210792830234
050 060 lin 55.1350661404639 -89586.7398596112 0.897181198858492
050 065 lin 27.9086070768282 -4089.37542147102 0.993972292650308
050 070 lin 107.147958070359 -253554.465834334 0.881869390207111
050 075 lin 30.2659401939591 1009.31502774087 0.998329085543607
050 080 lin 29.9882112752992 4362.54478381487 0.998060871524094
050 085 lin 38.1064249478869 -18994.4762658036 0.927189630365904
050 090 lin 45.7458296794173 -46036.6127086481 0.919210850654291
050 095 lin 40.283808192347 -26175.764684611 0.969808487379998
050 100 lin 35.7820938110282 2805.48739916639 0.996774623189598

055 001 lin 94.9687298089182 -2794.36441151821 0.999594309235359
055 005 lin 21.3260117381753 -13573.5424144999 0.987396627991032
055 010 lin 17.7270779873684 -11702.3055988517 0.985595543693174
055 015 lin 17.0209700155991 -9137.79599464807 0.990125702586537
055 020 lin 16.1520172254064 -7478.75174148145 0.991435802597174
055 025 lin 19.0463234343283 -15293.3544893888 0.987065365476165
055 030 lin 18.1434444750878 -7114.38428379636 0.993645800298765
055 035 lin 17.2885532910503 -3011.28735735195 0.966965116302804
055 040 lin 44.5842227543287 -74769.0095507485 0.918932491986999
055 045 lin 74.2098615693416 -178475.454974482 0.879409540922642
055 050 lin 39.9454650001472 -52716.5411646667 0.957326883517613
055 055 lin 62.3688506665887 -120848.447460667 0.928227740180671
055 060 lin 52.4995784586741 -83528.986512537 0.942051904209191
055 065 lin 45.1904762596197 -56032.9799020358 0.936623265500741
055 070 lin 43.0471692879805 -43565.3281541114 0.935555312340794
055 075 lin 47.1906428588178 -46368.1285527771 0.912367649298508
055 080 lin 51.5438227410866 -58263.3699003333 0.940636915829306
055 085 lin 72.9903380473313 -127090.731670876 0.898061421744867
055 090 lin 53.5378260092361 -55716.3656251619 0.892784780907221
055 095 lin 43.993115127834 -31490.7196807265 0.963133401310182
055 100 lin 35.6207480738841 3068.48348462972 0.997321199095616

060 001 lin 97.8410761024035 -5721.3513313703 0.999624881792919
060 005 lin 21.238605491652 -11595.7428470185 0.991051233227153
060 010 lin 18.4588575239199 -13629.3114801665 0.982699438693393
060 015 lin 17.1127709229456 -9069.90296607408 0.990016985008916
060 020 lin 17.7492858324594 -13000.9748708519 0.979805768575689
060 025 lin 19.4761124638305 -16735.0518377222 0.983520216333082
060 030 lin 19.962297351209 -13449.540578463 0.979053381531181
060 035 lin 16.7089225196859 -3916.90522507398 0.994032671408553
060 040 lin 41.9133526388095 -70312.2428657936 0.877409498865859
060 045 lin 82.6235648264375 -197914.744181426 0.885222191313287
060 050 lin 46.9878622765551 -70964.5000977037 0.945958236542229
060 055 lin 77.0754083815966 -166690.098425722 0.92380228100721
060 060 lin 62.8590372606846 -113099.278046611 0.942296862267524
060 065 lin 72.2640451519153 -149011.429963407 0.902804558604348
060 070 lin 106.152133903055 -235736.897970463 0.81099103579589
060 075 lin 79.4393834558102 -142752.763197944 0.896765438423747
060 080 lin 64.8728742558031 -99556.2951251669 0.900004801306005
060 085 lin 69.463319295034 -97773.9591190817 0.911460443419041
060 090 lin 58.2403932899107 -66336.0509827677 0.842373700464872
060 095 lin 89.7683006595735 -178401.167692854 0.84447982767563
060 100 lin 35.1570398692518 5051.01799705581 0.998052275425754

065 001 lin 100.033497993787 -5300.88401287061 0.999476807307554
065 005 lin 22.3521748082126 -13914.0855738519 0.986762554207044
065 010 lin 18.71631570824 -15072.5105904075 0.976093479125931
065 015 lin 17.0347638558008 -8585.40154333327 0.989483668511116
065 020 lin 17.8215374172739 -12834.271055463 0.981854725036252
065 025 lin 19.7403907892184 -17318.4916590741 0.978662770456155
065 030 lin 19.0073196623004 -10281.9402506481 0.980377507719637
065 035 lin 16.3093993445172 -1344.75181971991 0.99459464822573
065 040 lin 45.9075550574372 -77664.2532482134 0.930901808345169
065 045 lin 75.930716707086 -172350.375464148 0.896510045472147
065 050 lin 63.6861822617246 -123854.867582981 0.926363491153765
065 055 lin 84.3393325801525 -192155.385344704 0.909914444286797
065 060 lin 72.9069133378927 -146553.981390704 0.918310338317985
065 065 lin 84.5326984403485 -179967.141935167 0.925490780264684
065 070 lin 137.828327884061 -331653.980050165 0.841556534083594
065 075 lin 106.655814316379 -235724.015501926 0.894179931700677
065 080 lin 99.3363691977819 -200021.829979019 0.919202029543476
065 085 lin 61.105023885102 -68428.0530155781 0.851297855937261
065 090 lin 109.844099616956 -216994.321324148 0.876458635394806
065 095 lin 120.225884889891 -267345.944518199 0.848028081804448
065 100 lin 34.7996909145438 5986.58656364784 0.997268911245972

070 001 lin 102.920684934232 -4047.09499053657 0.999701370171398
070 005 lin 23.5151594202975 -15825.665167537 0.988959647947538
070 010 lin 19.2061999024024 -15845.0486659076 0.977488122222534
070 015 lin 17.7135563770406 -10055.7128356481 0.989695205827209
070 020 lin 17.2575345117018 -10194.8346491851 0.987603845457665
070 025 lin 24.9305344960863 -34469.8329962406 0.948082057722037
070 030 lin 22.4447929172027 -21211.6225240555 0.961258511395226
070 035 lin 16.512627456918 -1440.2782604807 0.991981679583106
070 040 lin 54.3399673110979 -102287.340652509 0.892387362129329
070 045 lin 90.9428352274652 -219826.059814074 0.90542110277976
070 050 lin 49.8947633249319 -67369.9497635033 0.924121792081378
070 055 lin 110.966372579675 -263085.115615908 0.854396461027665
070 060 lin 88.8376931081895 -185329.306920963 0.937002255134303
070 065 lin 110.78550931731 -264358.050159352 0.901699307694902

106

070 070 lin 159.949356783998 -380330.686560876 0.88353442055104
070 075 lin 129.010626047454 -279255.101404985 0.898504321522767
070 080 lin 226.903327099646 -566354.552746611 0.923023545662513
070 085 lin 133.250626342764 -251812.923622882 0.919466982194781
070 090 lin 231.91390065203 -586494.52280239 0.904325170291447
070 095 lin 137.588461341531 -313949.722178586 0.842227062755223
070 100 lin 34.1134775101008 9710.94658020372 0.99761773453477

075 001 lin 104.31084873925 -3100.23575111083 0.999041531388576
075 005 lin 25.0540997643204 -21290.0775593334 0.975052675683318
075 010 lin 20.686766779651 -20164.7932666481 0.964451276632779
075 015 lin 18.7189441407869 -13149.877470963 0.98278805988137
075 020 lin 18.9485223203299 -14363.8178550369 0.978248266749315
075 025 lin 23.9031685871022 -28078.3264333519 0.973706019669468
075 030 lin 22.1743291986967 -20104.3074672407 0.95729789619348
075 035 lin 20.1897603550094 -14657.0951796111 0.948614717911856
075 040 lin 49.2434518666105 -84070.8035885328 0.936026527044604
075 045 lin 107.850160432352 -272084.409164648 0.886342165533512
075 050 lin 82.8676742551422 -163022.687860345 0.904207592408866
075 055 lin 103.702497189548 -237247.386446833 0.932433607779714
075 060 lin 112.505369767595 -253787.537853167 0.927209909061548
075 065 lin 106.052714876128 -232428.161989259 0.939341412030037
075 070 lin 198.34985022917 -474154.53753141 0.893946877557232
075 075 lin 296.041580895395 -816201.778175036 0.8875386793406
075 080 lin 227.807267841329 -574356.499706196 0.841516601579808
075 085 lin 369.173190113996 -1049354.67550343 0.876924087000013
075 090 lin 293.780964094903 -776068.7462625 0.90633002796868
075 095 lin 360.680571383248 -1014922.15258637 0.878213624353302
075 100 lin 33.9567881728684 11456.2118426482 0.998340523523255

080 001 lin 107.311229406664 -4652.06643573998 0.999365028560524
080 005 lin 25.9021891243771 -22658.8780051853 0.979907613999859
080 010 lin 21.2543770230067 -21115.6407355926 0.962891043260714
080 015 lin 18.846068918627 -12760.7485303891 0.985480957582931
080 020 lin 19.125157108634 -15085.8260040742 0.979879593339117
080 025 lin 24.6379509901167 -32126.8407599074 0.963762644022064
080 030 lin 22.0173966704382 -18925.3481167035 0.970661061393968
080 035 lin 16.6180404201158 -1143.72562073308 0.994611665596106
080 040 lin 44.3496587236839 -62258.5441966645 0.913088898977279
080 045 lin 102.668203156358 -255231.87409087 0.878413887334354
080 050 lin 92.3047337762059 -201953.336929708 0.912203806224974
080 055 lin 111.860487589115 -264159.703040167 0.91650374959632
080 060 lin 117.839342578279 -269680.709191592 0.932460835960981
080 065 lin 112.119435319758 -258452.512331037 0.914426839385428
080 070 lin 242.334953463707 -644839.3716857 0.823022191073024
080 075 lin 303.146684728713 -849252.324284628 0.857775575299348
080 080 lin 287.187298171625 -783566.360606832 0.880584288352621
080 085 lin 264.919252344553 -681257.102348838 0.836125125621018
080 090 lin 285.080166021629 -763993.481155037 0.900318151314784
080 095 lin 332.905741042557 -914781.10283426 0.883105040231175
080 100 lin 35.672634153157 8705.36099153719 0.998387400203465

085 001 lin 109.403386347289 -4971.01940738759 0.99943081756858
085 005 lin 27.3842662962932 -26532.4184158705 0.974982070107368
085 010 lin 20.5315874640974 -18172.2818305 0.980671028879501
085 015 lin 19.6802580264399 -15174.0254523518 0.981327563297593
085 020 lin 21.7262628393817 -23591.6561429443 0.965325609456149
085 025 lin 23.6591014571779 -27743.8064675184 0.967605025791681
085 030 lin 21.9427565153571 -15623.3633150396 0.965193334516358
085 035 lin 17.0292545416998 -1826.3841663207 0.990457784255625
085 040 lin 76.6777031970507 -180845.158877537 0.884106248636181
085 045 lin 105.389899043585 -259211.940343278 0.888336303782485
085 050 lin 119.333390885933 -280550.017659796 0.859068243334928
085 055 lin 138.484774166233 -329048.763481814 0.899064363560242
085 060 lin 131.804254944991 -311387.871738574 0.926114412249798
085 065 lin 144.490267963805 -356063.072664815 0.907171874513552
085 070 lin 279.236182515516 -745934.836202711 0.835737287261005
085 075 lin 345.606053203841 -964195.648579612 0.8622887251655
085 080 lin 345.909609729909 -955610.885482093 0.893687773148817
085 085 lin 442.791869446442 -1297660.534616 0.858724651126497
085 090 lin 305.973297919251 -825825.285825667 0.886333100011047
085 095 lin 225.514505441848 -529512.744671706 0.882604872244045
085 100 lin 36.6509031015353 7664.11181288923 0.998728336285506

090 001 lin 111.184077109222 -270.777775462368 0.998542241614729
090 005 lin 29.06051781986 -30378.8878881112 0.970656576621045
090 010 lin 22.1543345725166 -23033.698854889 0.967552021206778
090 015 lin 19.7472164355087 -15211.0665358333 0.977233004330863
090 020 lin 20.2800349441224 -17842.4901361295 0.975864303119825
090 025 lin 28.7442631702006 -46141.7627532222 0.906822120416085
090 030 lin 19.7441706103605 -8955.3862989496 0.981156627480677
090 035 lin 20.4368492938194 -11116.042136412 0.965447516353284
090 040 lin 74.266524287102 -171645.349724259 0.899761031559719
090 045 lin 109.516052699071 -274817.741906223 0.877465644659625
090 050 lin 220.805032235438 -608494.540500796 0.878281067795711
090 055 lin 127.632286891328 -306980.138199297 0.931220473713977
090 060 lin 145.231890708363 -332953.737745815 0.93641110123389
090 065 lin 133.997823066254 -311127.14607287 0.926470855400808
090 070 lin 426.844991028496 -1257551.20515402 0.856932255511786
090 075 lin 399.668014914395 -1135086.53421713 0.880801968202254
090 080 lin 390.172028181116 -1077103.25072963 0.901092225029527
090 085 lin 145.848012002015 -295908.441828087 0.897531549380589
090 090 lin 319.582556950112 -875410.718245332 0.881481805557734

107

090 095 lin 273.631925289428 -618587.046046378 0.908396458689074
090 100 lin 37.8154167890387 7416.75973309245 0.998303280930727

095 001 lin 111.931597755167 5206.77148474194 0.999319705731589
095 005 lin 29.028752396777 -29078.6232101666 0.968457020590427
095 010 lin 22.3269951880705 -22952.2200801297 0.969269704931833
095 015 lin 19.5088925450435 -13094.0086607594 0.985444501452746
095 020 lin 24.0958719723978 -30777.8315231483 0.948976863875906
095 025 lin 27.4312457033018 -38668.1558722036 0.957328244900603
095 030 lin 23.1566922625611 -20180.8309670185 0.96996369734528
095 035 lin 18.5115647925094 -7096.81386211119 0.987636522974898
095 040 lin 72.4763072930761 -166962.05594426 0.891248949650769
095 045 lin 117.67293183387 -298069.620508 0.89057943960087
095 050 lin 272.248513707721 -782828.761617685 0.860465125211597
095 055 lin 132.950246466811 -327856.056540407 0.906304815339096
095 060 lin 144.141772036535 -325732.976183019 0.949923682359556
095 065 lin 154.33452753513 -362122.562684093 0.898903548052594
095 070 lin 457.009354899086 -1381001.26928996 0.841069703401008
095 075 lin 423.619991137197 -1230493.57604583 0.852315649874535
095 080 lin 310.437216502611 -807840.315569185 0.913172986008287
095 085 lin 156.833906415599 -327378.519180063 0.884450450073134
095 090 lin 408.879912414385 -1124176.32446796 0.902660810831159
095 095 lin 375.216426210746 -1026414.66137522 0.875993810496277
095 100 lin 38.6924941006828 6790.49778612959 0.998165290784243

100 001 lin 113.443943411124 1229.89345849887 0.99932875615284
100 005 lin 26.1550476306756 -18990.0131310926 0.990125820401348
100 010 lin 20.0588162107316 -15961.5875696667 0.985368310422639
100 015 lin 19.2387283816272 -13675.1234204814 0.985448179187138
100 020 lin 19.5950457651137 -16787.2924757963 0.97953750200527
100 025 lin 20.4591552636744 -20102.9736166296 0.962045773156969
100 030 lin 21.8954250823973 -22754.5395549632 0.952908810401462
100 035 lin 22.4523626015822 -24897.6124401666 0.938084639849719
100 040 lin 18.6618963311433 -10075.7337761851 0.987265597491322
100 045 lin 18.9268540398795 -8756.29364461117 0.99015276607936
100 050 lin 19.4867104122046 -15423.1757417962 0.959837560960758
100 055 lin 17.1896024616018 -5028.17813666673 0.987717424003725
100 060 lin 15.8924285003829 -484.611975407344 0.992824053112389
100 065 lin 15.2161443021142 2461.91646701851 0.993546404989386
100 070 lin 14.1797579876184 5487.70693394433 0.994148511768918
100 075 lin 13.6728632519337 6371.29272555537 0.992876838645478
100 080 lin 13.2145193084197 8745.63345742594 0.993670037568143
100 085 lin 12.7547511423232 10692.1036855556 0.994386983716336
100 090 lin 12.464209589347 12734.2355963889 0.994351156909822
100 095 lin 12.1453433914961 15306.9449849815 0.996387124402094
100 100 lin 10.1065969433091 16728.7777150184 0.9954501144683

108

GLOSSARY

ADSL Asymmetrical Digital Subscriber Line, a technology that uses classical
phone lines (copper pair) for high-speed Internet access.

AOL America On-Line, currently one of the largest Internet Service Providers in
the USA. Before providing Internet access, AOL was providing proprietary
on-line services to its customers.

BBS Bulletin Board System, “a computer system running software that allows
users to dial into the system over a phone line and, using a terminal pro-
gram, perform functions such as downloading software and data, upload-
ing data, reading news, and exchanging messages with other users” [Col04]

BitTorrent A P2P file transfer protocol where a file is broken into small segments
that can be downloaded in no particular order from any of the other down-
loaders of the file. This allows the file to be massively distributed, using
much more bandwidth (and higher speed) than if all the downloaders were
connecting to one unique source.

DCC Direct Client-to-Client, a way for IRC users to directly connect to another
user’s IRC client, bypassing the server.

eDonkey A peer-to-peer file sharing application developed by MetaMachine,
which allows to download files concurrently from multiple sources.

eMule an open-source, eDonkey-compatible client.

File sharing The “activity of making files available to other users for download
over the Internet, but also over smaller networks. Usually file sharing fol-
lows the peer-to-peer (P2P) model, where the files are stored on and served
by personal computers of the users. Most people who engage in file shar-
ing are also downloading files that other users share. Sometimes these two
activities are linked together.” [Col04]

Freenet A “decentralized censorship-resistant peer-to-peer distributed data
store. Freenet works by pooling the contributed bandwidth and storage
space of member computers to allow users to anonymously publish or re-
trieve various kinds of information. The network routing method Freenet
uses is both a key based routing as well as a type of distributed hash ta-
ble.” [Col04]

FTP The File Transfer Protocol. FTP servers were widely used before the advent
of peer-to-peer file sharing systems.

Gnutella A decentralized peer-to-peer file sharing system, without a central in-
dex. The original software, published in 2000 by two employees of Nullsoft,
a division of AOL, was quickly removed, but its protocol has been reverse-
engineered and numerous applications nowadays support the Gnutella
protocol.

110

ICQ The first peer-to-peer instant messaging application and one of the most
popular ones today.

IP Internet Protocol, a protocol designed for use in interconnected systems of
packet-switched computer communication networks.

Instant messaging A computer system that allows instant text communication
between two or more people through a network (in particular the Internet).

IRC Internet Relay Chat is an instant messaging application, older than ICQ, but
which uses an open protocol and no central server, unlike ICQ.

Jabber An open, XML-based protocol for instant messaging and presence.

JXTA An infrastructure by Sun Microsystems designed as a middleware for de-
veloping Java-based peer-to-peer applications.

Kazaa A peer-to-peer file sharing system that implements the FastTrack protocol
and uses a distributed index instead of a centralized one, as did Napster.

MLdonkey A free software file-sharing software that implements the eDonkey,
Overnet and Gnutella protocols, among others.

MSN Microsoft Network. MSN Messenger is Microsoft’s instant messaging ap-
plication.

Napster The first popular peer-to-peer file sharing system, relying on one central
server to index the files owned by the users.

NNTP Network News Transfer Protocol is the protocol used for the distribution,
inquiry, retrieval, and posting of news articles in Usenet.

Overnet An offspring of the eDonkey file sharing system, using the same proto-
col but not relying on servers to locate files.

Peer-to-peer A networking model, opposed to the traditional client-server
model, where all the nodes of the network are peers and can act both
as client and server at the same time.

Search engine A software that indexes WWW documents and allows users to
query them using a full-text search.

SMB System Message Block, a protocol for accessing resources (files, printers,
software modules, . . .) designed in 1985 by IBM and then further developed
by Microsoft.

TCP Internet’s Transport Control Protocol, a reliable, connection oriented trans-
port protocol, running on the top of IP.

UDP Internet’s User Datagram Protocol, an unreliable, connectionless transport
protocol running on the top of IP.

111

Usenet An asynchronous communication medium where users post and read
text messages to newsgroups. The medium is sustained among a large num-
ber of servers which propagate the messages to each other in a peer-to-peer
manner.

WWW The World Wide Web, sometimes also abbreviated “Web”

112

REFERENCES

[aim04] AOL instant messenger. http://www.fact-index.com/a/ao/
aol_instant_messenger.html , 2004.

[Ano02a] Anonymous. Gnucleus. http://www.gnucleus.com/ , 2002.

[Ano02b] Anonymous. Internet : arrêt du site d’échanges de fichiers Napster. Le
Monde, Mar 28th, 2002.

[Ano03a] Anonymous. Newzbot! public usenet resources for the masses. http:
//www.newzbot.com/ , 2003.

[Ano03b] Anonymous. Usenet top1000 servers. http://www.top1000.org/ ,
2003.

[AW03] O. Arturo Ribeiro and M. Weber. P2p applications’ architectures. Tech-
nical report, University of Jyväskylä, Agora Center, 2003.

[Bar00] S. Barber. Common nntp extensions. RFC 2980, IETF, 2000.

[CDKR02] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony
Rowstron. One ring to rule them all: Service discovery and binding in
structured peer-to-peer overlay networks. In SIGOPS European Work-
shop, September 2002.

[Col04] Collective. Wikipedia, the free encyclopedia. http://www.
wikipedia.org/ , June 2004.

[DM03] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks — From
Biological Nets to the Internet and WWW. Oxford University Press, 2003.

[Däm03] Hauke Dämpfling. Gnutella Web Caching System. http://www.
gnucleus.com/gwebcache/newgwc.html , June 2003.

[ea00] D. Box et al. Simple object access protocol (soap) 1.1. Note, WWW
Consortium, 2000.

[emu04] eMule-project.net – official emule site. http://www.
emule-project.net/ , 2004.

[fre] Freenet. http://freenetproject.org/cgi-bin/twiki/view/
Main/ICSI . Version 0.5.

[FV03] Kevin Fall and Kannan Varadhan. The ns Manual (formerly ns Notes and
Documentation). http://www.isi.edu/nsnam/ns/doc/ns_doc.
pdf , 2003.

[Gon01] Li Gong. Project jxta: A technology overview. http://www.jxta.
org/ , April 2001.

http://www.fact-index.com/a/ao/aol_instant_messenger.html
http://www.fact-index.com/a/ao/aol_instant_messenger.html
http://www.gnucleus.com/
http://www.newzbot.com/
http://www.newzbot.com/
http://www.top1000.org/
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.gnucleus.com/gwebcache/newgwc.html
http://www.gnucleus.com/gwebcache/newgwc.html
http://www.emule-project.net/
http://www.emule-project.net/
http://freenetproject.org/cgi-bin/twiki/view/Main/ICSI
http://freenetproject.org/cgi-bin/twiki/view/Main/ICSI
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.jxta.org/
http://www.jxta.org/

114

[Goo03a] Google Inc. Google. http://www.google.com/ , 2003.

[Goo03b] Google Inc. Google web apis. http://www.google.com/apis/ ,
2003.

[HA87] M. Horton and R. Adams. Standard for interchange of usenet mes-
sages. RFC 1036, IETF, 1987.

[IEE99] IEEE 802.11 Working Group. IEEE standard for information technol-
ogy — Telecommunications and information exchange between sys-
tems — Local and metropolitan area networks — Specific requirements
— Part 11: Wireless lan medium access control (mac) and physical
layer (phy) specifications. Standard 8802-11:1999(E), ISO/IEC, 1999.

[IEE02] IEEE 802.15 Working Group. IEEE standard for information technol-
ogy — Telecommunications and information exchange between sys-
tems — Local and metropolitan area networks — Specific requirements
— Part 15.1: Wireless medium access control (mac) and physical layer
(phy) specifications for wireless personal area networks (wpans). Stan-
dard IEEE Std 802.15.1TM-2002, IEEE Computer Society, 2002.

[Jab05] Jabber Software Foundation, http://www.jabber.org/ . Jabber:
Open Instant Messaging and a Whole Lot More, Powered by XMPP, 2005.

[KL86] B. Kantor and P. Lapsley. Network news transfer protocol. RFC 977,
IETF, 1986.

[Knu98] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, 3rd edition, 1998.

[KVW+04] Jani Kurhinen, Mikko Vapa, Matthieu Weber, Niko Kotilainen, and
Jarkko Vuori. Short range wireless p2p for co-operative learning. In 3rd
International Conference on Emerging Technologies and Applications (ICETA
2004), Kosice, Slovakia, 2004.

[LRW03] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Decon-
structing the kazaa network. In Proceedings of The Third Workshop on
Internet Applications (WIAPP’03). IEEE, 2003.

[man] UNIX Reference Manual — TALK.

[mld04] MLdonkey World. http://mldonkey.berlios.de/ , 2004.

[MN98] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Transactions on Modeling and Computer Simulation, 8(1):3–
30, Jan 1998.

[msn04] Msn messenger. http://messenger.msn.com/ , 2004.

http://www.google.com/
http://www.google.com/apis/
http://www.jabber.org/
http://mldonkey.berlios.de/
http://messenger.msn.com/

115

[OR93] J. Oikarinen and D. Reed. Internet relay chat protocol. RFC 1459, IETF,
1993.

[Ora01] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Tech-
nologies. O’Reilly & Associates, Inc., 1st edition, March 2001.

[ove02] Overnet. http://www.overnet.com/documentation/index.
html , 2002. Version 0.45.

[PFTV92] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, 2nd edition, 1992.

[Rei01] Lisa Rein. O’Reilly Network: ICQ. http://www.oreillynet.com/
pub/d/572 , 2001.

[RIF02] Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. Mapping
the gnutella network. IEEE Internet Computing, 6(1):50–57, Jan-
uary/February 2002.

[Sa03] S. Shepler and al. Network file system (nfs) version 4 protocol. RFC
3530, IETF, 2003.

[Sal99] Chip Salzenberg. What is usenet. http://www.faqs.org/faqs/
usenet/what-is/part1/ , 1999.

[sam05] samba. www.samba.org , 2005.

[Sch01] Rüdiger Schollmeier. A definition of peer-to-peer networking for the
classification of peer-to-peer architectures and applications. In IEEE
International Conference on Peer-to-Peer Computing, München, Germany,
August 2001.

[SGG01] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A mea-
surement study of peer-to-peer file sharing systems. Technical Report
UW-CSE-01-06-02, Department of Computer Science & Engineering,
University of Washington, Seattle, WA, USA, 2001.

[Sha02] Richard Sharpe. Just what is SMB? http://samba.anu.edu.au/
cifs/docs/what-is-smb.html , October 2002.

[Sha03] Sharman Networks, http://www.kazaa.com/us/help/
glossary.htm . KaZaA, 2002-2003. Version 2.1.

[Ste94] W. Richard Stevens. The Protocols, volume 1 of TCP/IP Illustrated.
Addison-Wesley Publishing Company, 1994.

[SW02] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across
large networks. In Proceedings of the Second ACM SIGCOMM Internet
Measurement Workshop (IMW 02). ACM, 2002.

http://www.overnet.com/documentation/index.html
http://www.overnet.com/documentation/index.html
http://www.oreillynet.com/pub/d/572
http://www.oreillynet.com/pub/d/572
http://www.faqs.org/faqs/usenet/what-is/part1/
http://www.faqs.org/faqs/usenet/what-is/part1/
www.samba.org
http://samba.anu.edu.au/cifs/docs/what-is-smb.html
http://samba.anu.edu.au/cifs/docs/what-is-smb.html
http://www.kazaa.com/us/help/glossary.htm
http://www.kazaa.com/us/help/glossary.htm

116

[Wri99] David W. Wright. Guidelines on usenet newsgroup name. http:
//www.faqs.org/faqs/usenet/creating-newsgroups/
naming/part1/ , 1999.

[WVV03] Matthieu Weber, Jarkko Vuori, and Mikko Vapa. Advertising peer-to-
peer networks over the internet. In Radiotekhnika, volume 133, pages
162–170, 2003.

[yah04] Yahoo! messenger. http://messenger.yahoo.com/ , 2004.

[ZRM94] Klaus Zeuge, Troy Rollo, and Ben Mesander. The Client-To-
Client Protocol (CTCP). http://www.irchelp.org/irchelp/rfc/
ctcpspec.html , 1994.

http://www.faqs.org/faqs/usenet/creating-newsgroups/naming/part1/
http://www.faqs.org/faqs/usenet/creating-newsgroups/naming/part1/
http://www.faqs.org/faqs/usenet/creating-newsgroups/naming/part1/
http://messenger.yahoo.com/
http://www.irchelp.org/irchelp/rfc/ctcpspec.html
http://www.irchelp.org/irchelp/rfc/ctcpspec.html

YHTEENVETO (FINNISH SUMMARY)

Internetissä on nykyisin yhä enemmän vertaisverkko-ohjelmia, jotka ovat enim-
mäkseen tarkoitettu ihmisten väliseen tiedostojen jakamiseen tai viestien vaih-
toon. Vaikka Internetin verkkoratkaisu onkin vertaisverkkojärjestelmä, useimmat
sovellukset, myös suosituimmat, on suunniteltu niin, että niiden pohjana on pal-
velintekniikka. Näiden perinteisten sovellusten käyttö vähenee jatkuvasti, kun
taas vertaisverkko-ohjelmien käyttö valtaa alaa.

Toisiinsa yhteydessä olevat vertaisverkko-ohjelmat muodostavat päällys-
verkon, jolla on oma rakenne ja joka on usein riippumaton alla olevan verkon
rakenteesta. Koska vertaisverkot ovat tavallaan autonomisia, halutessaan liittyä
tällaiseen verkkoon yksittäisen solmun täytyy hankkia liittymistieto ainakin yh-
destä verkkoon jo kuuluvasta solmusta, joka toimii sisääntulosolmuna. Solmusta
tulee osa verkkoa, kun se luo yhteyden sisääntulosolmuun. Liittymistiedon hank-
kimista pidetään yleensä vähäpätöisenä ongelmana ja se jätetään yhden ainoan
tietolähteen tehtäväksi. Vain yhden tietolähteen käyttäminen on heikkous ver-
kon rakenteessa, sillä sen poistaminen voi johtaa siihen, että kukaan ei voi liittyä
verkkoon.

Tässä tutkimuksessa esitetyn työn tavoite olikin kehittää täysin hajautet-
tu järjestelmä, joka tarjoaa saman palvelun, jota ei voi poistaa, ja joka käyttää
olemassa olevaa Internet-infrastruktuuria. IRC ja Usenet valittiin näiksi järjestel-
miksi, koska molemmat ovat laajalle levinneitä, tunnettuja ja täysin hajautettuja.
Myös Web-hakukoneiden ja verkon sattumanvaraisen selailun käyttöä kuvattiin
lyhyesti.

Työssä kuvattiin muodollinen protokolla liittymistietojen julkaisemista var-
ten, jonka avulla käyttäjä pääsee läpinäkyvästi käsiksi tietoon minkä tahansa yl-
läkuvatun median kautta. Työssä määriteltiin myös muodollinen merkintätapa,
jotta protokollaa käyttävien solmujen käyttäytymisen kuvaukset olisivat lyhyem-
piä ja yhdenmukaisia.

Kehitettiin simulaatio-ohjelma, jotta voitaisiin simuloida järjestelmän käyt-
täytymistä, todistaa sen pätevyys ja tutkia sen vaikutusta infrastruktuuriin, jossa
se toimii (IRC tai Usenet) kaistankäytön suhteen. Simulaattori toteutti ja otti huo-
mioon solmujen käyttäytymisen vain toiminnallisella tasolla eikä sellaista yksi-
tyiskohtaista tiedonvaihtoa, jota olisi vaadittu todellisessa järjestelmässä. Tämä
käyttäytyminen myös kuvattiin tarkasti tutkielmassa. Simulaattori myös oletti,
että solmut halusivat löytää mahdollisimman monta muuta solmua, joiden kans-
sa muodostaa yhteyksiä ja siten saada mahdollisimman monta naapuria, tiettyyn
ylärajaan asti.

IRCiin perustuvassa järjestelmässä verkkoon liittymistä yrittävät solmut jul-
kaisivat omat liittymistiedot lähetyskanavalla (tässä tapauksessa IRC- kanavalla,
jolla on edeltämääritelty nimi). Tällöin verkkoon jo kuuluvat solmut, jotka ha-
lusivat muodostaa lisää yhteyksiä, pystyivät luomaan yhteyden solmuihin, jotka
mainostivat itseään.

Usenetiin perustuvassa järjestelmässä verkkoon liittymistä yrittävät solmut
lukivat Usenet-artikkeleja tietystä uutisryhmästä ja etsivät liittymistietoja. Jos ne

118

onnistuivat siinä, niiden oli mahdollista käyttää tietoa ja yrittää luoda yhteys, tai
ne julkaisivat omat liittymistiedot siinä toivossa, että jokin toinen solmu yrittäisi
luoda yhteyden niihin.

Simulaatiot ajettiin useilla parametreilla, jotta voitaisiin määrittää parhaat
mahdolliset arvot parametreille. Nämä parametrit koskivat seuraavia asioita:
(1) solmun tarvitsemien naapureiden määrä, jotta se lopettaisi aktiivisen uusien
naapurien etsimisen ja odottaisi, että muut löytävät sen (haluttu naapurien mi-
nimimäärä) ja (2) kuinka monta muuta solmua solmun tarvitsee löytää (mutta
ei luoda yhteyttä niiden kanssa), jotta se lähtisi pois lähetyskanavalta (tuttujen
solmujen minimimäärä ennen lähtöä). Usenet-pohjaisen simulaattorin tapauksessa
myös artikkeleiden vanhenemisaika otettiin huomioon (vanhenemisaika).

Simulaatiot tuottivat arvoja, jotka kuvasivat enimmäkseen järjestelmän
tuottamaa keskimääräistä liikennettä sekä indeksin, joka kuvasi kuinka tehok-
kaasti solmut olivat klusteroituneet, kun tavoitteena oli estää verkon jakautu-
minen osiin. Nämä tulokset yhdistettiin sitten järjestelmän tehokkuusindeksiksi.
Samat simulaatiot ajettiin kasvavalle solmumäärälle (1000–10 000), jotta voitaisiin
yrittää ennustaa järjestelmän skaalautuvuus.

Simulaatioiden tulokset osoittivat, että, kun parametrien arvot valitaan huo-
lella, on mahdollista mainostaa vertaisverkkoja täysin hajautetusti käyttäen sii-
hen jo olemassaolevia Internet-infrastruktuureja kuten IRC-verkkoja tai Usenet-
verkkoa. Tässä työssä kuvattu mainostamismenetelmä, jota käytettiin sopivilla
parametrien arvoilla, salli solmujen yhdistyä verkoksi, joka muodostui yhdestä
ainoasta yhtenäisestä komponentista, mikä oli ensimmäinen edellytys sille, että
järjestelmää voitiin pitää “toimivana”.

Molemmat simulaatiot, eli IRCin tai Usenetin käyttäminen lähetyskanava-
na mainoksille, käyttäytyivät samantapaisesti ja tuottivat optimaalisia tuloksia
melkeinpä samoilla parametrien arvoilla:

• Parametrin haluttu naapurien minimimäärä pienet arvot tuottivat useita eril-
lisiä komponentteja, kun taas suuremmat arvot takasivat yhden yhtenäisen
komponentin. Kuitenkin pienemmät arvot vähensivät solmun ja lähetyska-
navan välillä tapahtuvan liikenteen määrää.

• Parametrin tuttujen solmujen minimimäärä ennen lähtöä pienet arvot tuottivat
vähemmän liikennettä solmua kohti, mutta vaikuttivat hyvin vähän kluste-
roitumistehokkuuteen (IRC-pohjaisen järjestelmän tapauksessa).

• Ihannearvo sijoittui kohtaan, jossa liikennemäärien minimointi oli ristirii-
dassa useamman kuin yhden yhtenäisen komponentin syntymisen kanssa.
Todellinen ihannearvo piti siksi valita niin, että useiden erillisten kompo-
nenttien syntyminen oli epätodennäköistä ilman, että verkkoon syntyi lii-
kaa liikennettä.

Lisäksi Usenet-pohjaisten simulaatioiden tapauksessa mainosten vanhene-
misajat täytyi ottaa huomioon liikennemäärän pitämiseksi mahdollisimman pie-
nenä.

119

IRC-pohjaisessa simulaatiossa parhaat mahdolliset arvot olivat: haluttu naa-
purien minimimäärä = 35 ja tuttujen solmujen minimimäärä ennen lähtöä = 5. Näillä
arvoilla liikennettä tuli 6900 tavua solmua kohti. Usenet-pohjaisessa simulaatios-
sa parhaat mahdolliset arvot olivat haluttu naapurien minimimäärä = 35, tuttujen
solmujen minimimäärä ennen lähtöä = 10, ja vanhenemisajan parametrin a arvo-
na 0,3 ja parametrin b arvona 5. Näillä arvoilla liikennettä tuli 9400 tavua solmua
kohti.

IRC-järjestelmä tuotti vain noin kolme neljäsosaa liikennettä verrattuna
Usenet-järjestelmään, mutta toisaalta käytännössä Usenet-palvelimet on mitoi-
tettu korkeampia liikennemääriä varten kuin IRC-palvelimet. Liikenne solmua
kohden Usenet-pohjaisissa simulaatioissa riippui kuitenkin verkon solmujen
määrästä, kun taas IRC-pohjaisessa järjestelmässä se oli vakio, mikä tarkoittaa
sitä, että laajat Usenet-verkot tuottavat paljon enemmän liikennettä kuin pienet.

Parametri haluttu naapurien minimimäärä vaikutti voimakkaasti sekä IRC- et-
tä Usenet-pohjaisen simulaation klusteroitumistehokkuuteen, kun taas tuttujen
solmujen minimimäärä ennen lähtöä vaikutti siihen hyvin vähän. Tämä selittyy sil-
lä, että solmu keräsi tietoa muista solmuista enimmäkseen vaihtamalla naapu-
riluetteloja omien naapureidensa kanssa (jotta lähetyskanava kuormittuisi mah-
dollisimman vähän). Siksi useimmat tunnetuista solmuista kuuluivat jo ennes-
tään samaan yhtenäiseen komponenttiin kuin solmu itsekin, mikä tarkoittaa si-
tä, että kahden erillisen komponentin välisiin yhteyksiin ei vaikuttanut lisäävästi
parametrin tuttujen solmujen minimimäärä ennen lähtöä isompi arvo.

Parametri haluttu naapurien minimimäärä vaikutti voimakkaasti IRC-pohjais-
ten simulaatioiden verkkoliikenteen määrään, ja parametri tuttujen solmujen mi-
nimimäärä ennen lähtöä vaikutti paljon Usenet-pohjaisten simulaatioiden liiken-
nemääriin. Tämä selittyy IRCin ja Usenetin toimintatapojen erilaisuudella: usei-
den naapureiden hankkiminen edellytti pidempää pysymistä IRC-kanavalla tai
useampien mainosten hakemista Usenet-palvelimelta, mutta uusien tuttujen sol-
mujen hankkiminen silloin, kun parametri tuttujen solmujen minimimäärä ennen
lähtöä oli pieni, edellytti useita liittymisiä lähetyskanavalle, ja tämä aiheuttaa pal-
jon enemmän otsikkotietoliikennettä Usenetissä kuin IRCissä. Otsikkotietojen ai-
heuttama liikenne oli runsaampaa kuin lähetyskanavan pitkittyneen käytön ai-
heuttama liikenne, mikä selittää eroavaisuuden simulaatioiden tuloksissa.

Lopuksi, simulaation aikana luodun verkon luonnehtiminen osoitti, että
verkot olivat samankaltaisia, mutta Usenetiä käyttävät simulaatiot synnyttivät
verkkoja, jotka olivat tiukemmin yhteydessä kuin IRCiin perustuvissa simulaa-
tioissa: klusteroitumiskerroin oli korkeampi Usenetin tapauksessa, ja niinsanottu
verkon “halkaisija” (määritellään pisimmän ja keskimääräisen lyhyimmän polun
avulla) oli pienempi. Nämä tulokset osoittivat, että Usenetin käyttö lähetyskana-
vana tuotti hieman “laadukkaampia” verkkoja, mutta samalla enemmän liiken-
nettä verkossa.

Jatkotutkimusaihe voisi olla WWW-pohjaisen mainostusjärjestelmän tehok-
kuuden tutkiminen, jollainen tässä työssä kuvattiin mutta ei toteutettu, samoin
kuin optimaalisen suunnitelman kehittäminen sattumanvaraiseen IP-osoitteiden

120

“skannaamiseen” siinä tapauksessa, että mikään edellämainituista lähetyska-
navista (IRC, Usenet, Web-palvelin) ei ole käytettävissä. Kuvio voisi perustua
esim. IP-osoiteluokkien tilastolliseen jakaumaan eri organisaatiossa, sekä IP-
osoitteiden jakaumaan isännille näissä luokissa, jotta halutun vertaisverkon jäse-
nen löytyminen olisi mahdollisimman todennäköistä.

Lisäksi työssä käytetty mainostusjärjestelmä perustuu oletukselle, että ver-
kon kaikki solmut ovat halukkaita osallistumaan mainostukseen. Kuitenkin to-
dellisuudessa solmut usein toimivat itsekkäästi, eivätkä halua jakaa resurssejaan
yhteiseksi hyväksi: tällaisten solmujen vaikutus järjestelmän tehokkuuteen on
vielä tutkimatta.

	Abstract
	Acknowledgements
	List of Figures
	Contents
	1 Introduction
	1.1 Peer-to-Peer Networks
	1.1.1 Historical Background
	1.1.2 The P2P Revolution
	1.1.3 A Matter of Perspective

	1.2 Overlay Networks
	1.3 Research Problem
	1.4 Structure of the Thesis

	2 Finding the P2P Network
	2.1 The Real-World Example
	2.2 Existing Systems
	2.2.1 Centralized Indexes
	2.2.2 Decentralized Indexes
	2.2.3 Without an Index

	2.3 Toward a Universal Solution
	2.3.1 Usenet
	2.3.2 IRC
	2.3.3 WWW Search Engines
	2.3.4 Random Network Scanning

	2.4 Protocol Architecture
	2.4.1 Information Layer
	2.4.2 Transport Layer

	3 Formal Terminology
	3.1 Network
	3.2 Nodes
	3.3 Broadcast Channel

	4 The Simulator
	4.1 Broadcast Channels
	4.1.1 IRC
	4.1.2 Usenet
	4.1.3 Other Possible Broadcast Channels

	4.2 Design of the Simulator
	4.2.1 Initialization
	4.2.2 Simulation
	4.2.3 Synthesis

	4.3 The Simulator as a State Machine

	5 Traffic Estimation
	5.1 IRC Protocol
	5.1.1 Joining the Broadcast Channel
	5.1.2 Advertising
	5.1.3 Leaving the Broadcast Channel

	5.2 NNTP
	5.2.1 Joining the Broadcast Channel
	5.2.2 Retrieving an Advertisement
	5.2.3 Sending an Advertisement
	5.2.4 Leaving the Broadcast Channel

	6 Node Behaviors
	6.1 Common Behaviors
	6.1.1 Neighbors Lists Exchange
	6.1.2 Connection Requests
	6.1.3 Incoming Connections
	6.1.4 Joining the Broadcast Channel
	6.1.5 Leaving the Broadcast Channel
	6.1.6 Connection Target Selection

	6.2 Specific Behaviors
	6.2.1 IRC as a Broadcast Channel
	6.2.2 Usenet as a Broadcast Channel

	7 Experimental Results
	7.1 Goals of the Simulations
	7.1.1 Disjoint Networks
	7.1.2 Usage of the Broadcast Channel

	7.2 Parameters of the Simulation
	7.3 Processing of the Results
	7.4 IRC-based Simulation Results
	7.4.1 Simulations of 1000 Nodes
	7.4.2 Influence of the Number of Nodes
	7.4.3 Network Characterization

	7.5 Usenet-based Simulation Results
	7.5.1 Simulations of 1000 Nodes
	7.5.2 Influence of the Number of Nodes
	7.5.3 Influence of the Expiration Time
	7.5.4 Network Characterization

	8 Conclusion
	Appendix 1 Simulator's Flowcharts
	Appendix 2 Gnutella Distribution Random Deviate
	2.1 Algorithm
	2.2 Goodness of Fit

	Appendix 3 Simulation Results File Example
	Appendix 4 IRC and NNTP Protocol Messages
	Appendix 5 Traffic Per Node For Increasing Number of Nodes
	5.1 IRC-Based System
	5.2 Usenet-Based System

	Glossary
	References
	Yhteenveto (Finnish Summary)

