

MOBILE CHEDAR MIDDLEWARE AND MOBILE
P2P COMMUNICATION CENTER FOR NOKIA 770

by

André Mendes

Supervisor: Research Student Mikko Vapa

Special Assignment Report

20th of January 2006

Department of Mathematical Information Technology

University of Jyväskylä

i

Author: André Marques de Carvalho Mendes

Contact Information: Roninmäentie 1 G 23/a, 40500 Jyväskylä, Finland,

amcmendes@gmail.com, +351919318927

Title: Mobile Chedar Middleware and Mobile P2P Communication Center for

Nokia 770.

Work: Special Assignment Report

Number of Pages: 53

Study Program: Erasmus Exchange

Keywords: Peer-to-Peer, Middleware, Mobile Peer-to-Peer

ABSTRACT

This special assignment report presents the results of the Mobile Chedar

Middleware and a Mobile Peer-to-Peer application for Nokia 770 mobile device

development project. All the stages of the project were undertaken in University

of Jyväskylä at Department of Mathematical Information Technology. The

development of the Mobile Chedar Middleware and the Mobile P2P

Communication Center aimed to determine the feasibility of Nokia 770 for

communicating with Chedar nodes and mobile nodes in a P2P distributed

environment. The experimental trials were done in a simulated environment for

Nokia 770 Internet Tablet. A good performance was achieved in the simulator.

The real Nokia 770 devices are not available yet, but because Nokia 770 is

powered by Maemo with a Linux distribution, similar results are also expected

from the real device.

 ii

TABLE OF CONTENTS

Introduction ... 1
Python study .. 3
Overview... 5

Mobile Chedar Middleware.. 5
Mobile P2P Communication Center .. 6

Protocols ... 7
Chedar Protocol ... 7
Group Chat Protocol .. 8

Classes and Methods .. 9
UML Class Diagram.. 9
Mobile Chedar Middleware for Nokia 770 ... 9
MP2P Communication Center Application for Nokia 77021
MP2P Communication Center User Interface for Nokia 77025

Tests...33
Mobile Chedar Middleware Tests ...33
MP2P Communication Center Tests ...36

Future Work...38
Tests..38
Additional Features..38
New Applications...39

Working Hours..40
Conclusion..42
References...44

 iii

LIST OF FIGURES

Number Page
Figure 1 – Communication among Chedar P2P Network

and Nokia 770 tablets..5
Figure 2 – User 1 created a “Special Assignment” stream

and added text on it ...6
Figure 3 – User 2 joined to the “Special Assignment” stream

and adds text on it..6
Figure 4 – Standard message to establish a connection..7
Figure 5 – Message exchanges ...7
Figure 6 – Join message ..8
Figure 7 – Update message...8
Figure 8 - UML class diagram of the developed software..10
Figure 9 – Location of the Middleware in the structure of the

software and the hardware ...11
Figure 10 – Fields of the message...11
Figure 11 – Message example and hashtable data structure.....................................12
Figure 12 – Data structure of the connection...13
Figure 13 – Data structure of the resource ...15
Figure 14 – Data structure of the resource manager...16
Figure 15 – Data structure of the server..17
Figure 16 – List of Connections..18
Figure 17 – List of connected neighbors ...19
Figure 18 - Location of the Application in the structure of

the software and the hardware ..22
Figure 19 – Data structures of the application ...23
Figure 20 - Location of the User Interface in the structure of

the software and the hardware ..26
Figure 21 – Application running in Nokia 770...27
Figure 22 – Representation of the search view with GTK objects27
Figure 23 – Representation of the create stream dialog with

GTK objects ...28
Figure 24 – Application running in Nokia 770...29
Figure 25 – Representation of the stream view with GTK objects........................29
Figure 26 – First test: resource query and resource reply ...33
Figure 27 – Second test: resource query, resource reply and

forward query..34
Figure 28 – Third test: resource query, resource reply and

forward query..34

 iv

Figure 29 – Fourth test: resource query, resource reply and
forward query..35

Figure 30 – Fifth test: resource query, resource reply and
forward query..35

Figure 31 – Sixth test: resource query, resource reply and forward query between
Mobile Chedar and Chedar P2P Network ..36

Figure 32 - Join Message, Update messages and forwarded updates37
Figure 33 – Phases of the project..40

 v

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to research student Mikko

Vapa for his assistance in the development of the project. In addition, special

thanks to Niko Kotilainen whose familiarity with the area was helpful during the

early programming phase of this undertaking. Thanks also to the staff of the

Faculty of Information Technology for their support.

 vi

GLOSSARY

Bluetooth. A short-range radio technology that allows radio connections
between devices within a 30-foot range of each other.

Breadth-First-Search. It is a tree search algorithm used for traversing or
searching a tree, tree structure, or graph. Intuitively, you start at the root node
and explore all the neighboring nodes. Then for each of those nodes, explore
their unexplored neighbor nodes, and so on until the algorithm finds the goal.

Buffer. An amount of memory which temporally stores data to help compensate
for differences in the transfer rate of data from one device to another.

Callback function. Function that is passed (by reference) to another functions.
The other function calls the callback function under defined conditions (for
instance, upon completion).

Chedar. Distributed computing and storage system that can be used as a
platform for distributed Peer-to-Peer applications and Mobile Chedar as an
extension to Chedar Network for mobile devices. [1]

CPU. Central Processing Unit – the module of the processor that controls and
interprets the machine-language program and its execution.

GTK. Initially created for the graphics program GIMP, the GIMP Toolkit –
abbreviated as GTK+ - is one of the most popular widget toolkits for the X
Window System, intended for creating graphical user interfaces. GTK+ and Qt
have supplanted Motif, previously the most widely-used X widget toolkit. [2]

Host. The name given to an individual computer running in the Internet.

Ip Address. Each machine connected to the Internet has an address known as
an Internet Protocol address (IP address). The IP address takes the form of four
numbers separated by dots, for instance: 123.45.67.890.

Maemo. It is a development platform for creating applications for the Nokia 770
Internet Tablet (http://www.nokia.com/770) and other maemo compliant
handheld devices. [3]

 vii

Middleware. This term applies to a software layer that provides a programming
abstraction as well as masks the heterogeneity of the underlying networks,
hardware, operating systems and programming languages. [4]

Mobile Chedar. Mobile Peer-to-Peer middleware, which extends Chedar P2P
Network for mobile devices. [1]

Multi-thread server. Contains a pool of threads which process requests. The
server creates a new thread when a client makes a connection and destroys the
thread when the client closes the connection.

Peer-to-Peer computer network. It is a network that relies on computing
power at the edges (ends) of a communication rather than in the network itself.
P2P networks are used for sharing content like audio, video or data in digital
format and for sharing computation load between end machines.

PyGTK. It is a set of Python wrappers for the GTK GUI library. [2]

Python. It is an interpreted, interactive, object-oriented programming language.
It is often compared to Tcl, Perl, Scheme, or Java. [5]

Selector. Performs an operation on a variety of data structures (classes) for
example a list of sockets.

Server. A process that runs on a host that relays information to a client after
processing the request of a client.

Socket. Provides an endpoint for a communication session. It is comprised of an
IP address, a transport protocol and a port address.

Stream. A continuous flow of data, usually digitally encoded, designed to be
processed sequentially.

TCP. Basic Unit of Transmission Control Protocol. It is the main transport
protocol among Internet protocols, giving reliable and connection directional full
duplex transmission stream. Data is delivered using the IP protocol.

Thread. Basic unit of program execution. It is a stream of computer instructions
that is under control of a process.

Wireless LAN. Internet connection that can be accessed by radio waves.
WLANs typically have a range of 50 – 100 m.

Chapter 1 – Introduction

 1

C h a p t e r 1

INTRODUCTION

In Department of MIT there is a Peer-to-Peer research group

(http://tisu.it.jyu.fi/cheesefactory/index.shtml) concentrating on distributed

search of resources and their efficient use. This group has developed Chedar P2P

System.

Chedar is a distributed computing and storage system that can be used as a

platform for distributed peer-to-peer applications and Mobile Chedar is an

extension to Chedar network for mobile devices. Chedar is Java-based peer-to-

peer computing platform that can be used to build a network of workstations

where each node is providing and consuming resources. Chedar has been

designed as a general platform for locating resources meaning that resource types

can vary and be customized for different user needs. Chedar is built upon TCP-

sockets and XML technologies. [1]

The aim of this project was to develop a Mobile Chedar Middleware and a

Mobile Peer-to-Peer application for the Nokia 770 mobile device. Python

programming language was selected for the development. The Maemo Platform

(http://maemo.org) [3] was used to create a simulated environment of Nokia 770

Internet Tablet to run the Python programs. The main purpose of this

development is getting an extension of Chedar system to the Nokia 770 mobile

device (http://www.nokia.com/770).

Chapter 1 – Introduction

 2

Mobile Chedar has already been implemented for Nokia 6600 using Bluetooth

radio technology. [6] However Nokia 770 supports Wireless LAN and allows

creating multimedia P2P applications (video & music) with large screen size.

This report is structured in these chapters. Chapter 2 contains the relevant issues

about Python Programming Language. Chapter 3 contains an overview of the

Mobile Chedar Middleware and the Mobile P2P Communication Center. Chapter

4 contains a description of the Chedar protocol and Group Chat protocol.

Chapter 5 contains a specification of the UML Class Diagram, Classes and

Methods. Chapter 6 contains the tests used to assure the software reliability.

Chapter 7 contains some suggestions for future applications. Chapter 8 contains

the amount of working hours. Chapter 9 contains conclusions about the

developed project.

Chapter 2 – Python Study

 3

C h a p t e r 2

PYTHON STUDY

Python Programming Language was selected for the project development. It was

created in the early 1990s by Guido van Rossum at Stichting Mathematisch

Centrum (CWI) in the Netherlands as a successor of the ABC programming

language.

Python is a multi-paradigm language. This means that, rather than forcing

programmers to adopt one particular style of coding, it permits several: object

orientation, structured programming, functional programming, aspect-oriented

programming, and more recently, design by contract, are all supported. Python is

dynamically type-checked and uses garbage collection for memory management.

An important feature of Python is dynamic name resolution, which binds method

and variable names during program execution. The efficient high-level data

structures and a simple but effective approach to object-oriented programming is

one of the reasons that explains why Python has gained so wide acceptance. It is

also important to mention that many Python interpreters have been ported (i.e.

changed to make it work on) to many platforms. All Python programs can work

on all these platforms without requiring changes.

However, Python is sometimes classified as a "scripting programming language".

Python proponents prefer to call it a high level dynamic programming language,

on the grounds that "scripting language" implies a language that is only used for

simple shell scripts or that refers to a language like JavaScript: much simpler and,

for most purposes, less capable than "real" programming languages such as

Chapter 2 – Python Study

 4

Python. For example Google uses Python for many tasks including the backends

of web apps such as Gmail [7] and Google Maps [8] and for many of its search-

engine internals. [2]

Another important goal of the language is ease of extensibility. New built-in

modules are easily written in C or C++. Python can also be used as an extension

language for existing modules and applications that need a programmable

interface.

Python's support for object oriented programming paradigm is vast. It supports

polymorphism, not only within a class hierarchy but also by duck typing. Any

object can be used for any type, and it will work as long as it has the proper

methods and attributes. And everything in Python is an object, including classes,

functions, numbers and modules. Python also has support for metaclasses, an

advanced tool for enhancing classes' functionality. Naturally, inheritance,

including multiple inheritances, is supported. Python also has some features that

make it possible to write large programs, even though it lacks most forms of

compile-time checking: a program can be constructed out of a number of

modules, each of which defines its own namespace, and modules can define

classes which provide further encapsulation. Exception handling makes it

possible to catch errors where required without cluttering all code with error

checking.

Python also provides facilities for introspection, so that a debugger or profiler (or

other development tools) for Python programs can be written in Python itself.

There is also a generic way to convert an object into a stream bytes and back,

which can be used to implement persistent objects as well as various distributed

objects.

Chapter 3 – Overview

 5

C h a p t e r 3

OVERVIEW

Mobile Chedar Middleware

The first phase of the project was to develop a middleware for the Nokia 770

mobile device and test how the middleware works using a simple application

running in a simulated mobile node. The developed middleware provides

methods to send queries, receive queries, forward queries and process requests.

All these functionalities were tested with an application performing video file

requests.

Following picture presents communication among Chedar P2P Network and

Nokia 770 mobile devices, as well the locations of Mobile Chedar middleware

and application.

Figure 1 – Communication among Chedar P2P Network and Nokia 770 tablets.

Chapter 3 – Overview

 6

Mobile P2P Communication Center

The next phase of the project was to develop a Mobile Peer-to-Peer application

for group communication in real-time. This application can be used for example

by students to subscribe a specific lecture. All the students joined in the same

lecture stream can read and add information to it. Modifications to the stream

will be visible to the lecture group. The developed application provides user

functionalities to locate stream, join stream, publish stream, update stream and

close stream.

Following pictures present communication between two users. The Special

Assignment stream is created by the user 1. The user 2 joins to the new stream

and starts to see in real-time what is being added. He is also adding by himself

new information.

Figure 2 – User 1 created a
“Special Assignment”
stream and added text on
it.

Figure 3 – User 2 joined to
the “Special Assignment”
stream and adds text on it.

Chapter 4 – Protocols

 7

C h a p t e r 4

PROTOCOLS

Chedar Protocol

There are three types of messages used for topology management in Chedar.

When one node wants to establish a new connection to some node it sends the

standard message “CHEDARPORT<port of the node>”. After this step both

nodes are ready to communicate. This communication is based on two types of

messages. Nodes can send messages with queries and messages with replies to the

received queries. Following pictures present the three types of messages.

Mobile Chedar

Node

Mobile Chedar

Node

CHEDARPORT11844

Node running on port
11844

Figure 4 – Standard message to establish a connection.

Figure 5 – Message exchanges.

Chapter 4 – Protocols

 8

Group Chat Protocol

There are two types of messages used in the Group Chat Protocol. When one

node wants to join to a specific stream it sends a message with: “JOIN <name of

the stream>”. If one node wants to send an update it sends a message with:

“UPDATE <text to be added>”. Following pictures present the two types of

messages.

Join SpecialAssignment

Figure 6 – Join message.

Update Final Report!

Update Final Report!

Update Final Report!

Figure 7 – Update message. The update will be forwarded to all the nodes that
have subscribed to the same stream.

Chapter 5 – Classes and Methods

 9

C h a p t e r 5

CLASSES AND METHODS

UML Class Diagram

Figure 8 illustrates the UML class diagram of classes in MP2P Communication

Center and Mobile Chedar.

Everything is an object in Python. However the UML class diagram only has the

developed main classes. In this abstraction level the objects provided by Python

were not shown in this diagram. In the next subchapters all the data structures

will be shown and explained.

Mobile Chedar Middleware for Nokia 770

Mobile Chedar Middleware is a communication layer that allows applications to

discover resources of Chedar P2P network on a mobile device. This section

describes the classes and methods of Mobile Chedar for Nokia 770

implementation. Figure 9 illustrates the position of the Middleware among layers

of software and hardware.

Chapter 5 – Classes and Methods

 10

Figure 8 - UML class diagram of the developed software.

Chapter 5 – Classes and Methods

 11

Figure 9 – Location of the Middleware in the structure of the software and the
hardware.

Class Message

This class is used to save one or more queries. There are two types of queries:

requests and replies. All the messages will be exchanged among nodes. Figure 10

illustrates the fields of the message.

8 bytes

Number of keys and values
Number of the

bytes of the
key

Number of the bytes of the value

4 bytes 12 bytes

Key Value

Number of the
bytes of the

key

Number of the
bytes of the

value

The amount of these fields is defined by the number of keys and values

Figure 10 – Fields of the message.

Chapter 5 – Classes and Methods

 12

The Figure 11 illustrates an example of a message with two fields.

2 9 7 Specifier Request 6 5 Action Query

All the keys and the
values of the message
will be saved in a Python
dictionary.
A dictionary in Python is
like an instance of the
Hashtable of Java or an
instance of the
Scripting.Dictionary
object of Visual Basic.

Hashtable

Figure 11 – Message example and hashtable data structure.

Next the methods of the Message class will be described.

__init__(self, socket = None)
This is the message constructor. If the socket is not specified an empty message

with a random id will be created. Otherwise the received socket will be assigned

to a private variable and it will be later read to receive the new message.

receiveMessage(self)
The contents of the message will be received through the specified socket. In the

beginning the number of keys and values (8 bytes) will be read. After this

operation the number of the bytes of the key (4 bytes) and the number of the

bytes of the value (12 bytes) will be read. Finally the key and the value will be read

and both will be saved in the message.

Chapter 5 – Classes and Methods

 13

setString(self, key, value)
Add the key and the value to the message.

getString(self, key)
Return the string value associated to the specified key.

getKeyAmount(self)
Return the number of keys of the message.

size(self)
Return the number of characters of all values.

Class Connection

This class is used to create a TCP connection. Each node has different TCP

connections for all of its neighbors. The Figure 12 illustrates the data structure of

the connection.

Host Port Socket

Figure 12 – Data structure of the connection.

Next the methods of the Connection class will be described.

__init__(self, Id = None, sock = None)
This is the connection constructor. The Id has information about the host and

the port (<host>:<port>). If the Id is specified, the host and the port will be

assigned to private variables. These will be used to establish a TCP connection.

Otherwise the socket will be specified through the variable sock and assigned to

a private variable. Then the TCP connection will be created with this socket.

Chapter 5 – Classes and Methods

 14

connect(self, ownPortNumber)
Connect to the host and the port given by the private variables. After this step a

standard protocol message (CHEDARPORT<ownPortNumber>) will be

sent through the socket. The node is always listening for new connections in the

specified port number.

getHostName(self)
Return the Id of the connection. The Id is composed of port and host

(<host:port>).

sendChedarMessage(self, message)
Send the specified message through the socket. The message is formatted

according to the rules defined by the protocol.

receiveChedarMessage(self)
Receive the standard Chedar message through the socket.

checkConnection(self)
Receive 15 bytes of data and verify if they match with the expected bytes defined

by the protocol. The connection will be consider valid if the expected bytes will

be received otherwise it will be consider invalid and it will be dropped.

getSocket(self)
Return the socket of the connection.

closeConnection(self)
Close the socket of the connection.

Chapter 5 – Classes and Methods

 15

Class Resource

This class is used to create a resource. One resource is defined by its name and its

location. The Figure 13 illustrates the data structure of the resource.

Name of the
resource

Location of the
resource

Figure 13 – Data structure of the resource.

Next the methods of the Resource class will be described.

__init__(self, query, reply)
This is the resource constructor. The specified query and the specified reply

will be assigned to private variables.

getQuery(self)
Return the name of the resource.

getReply(self)
Return the location of the resource.

Class Resource Manager

This class is used to manage resources database. This searchable database allows

resources to be added and removed.

Chapter 5 – Classes and Methods

 16

The Figure 14 illustrates the data structure of the resource manager.

Resource

Resource

Resource

Resource

.

..

List of Resources

Figure 14 – Data structure of the resource manager.

Next the methods of the ResourceManager class will be described.

__init__(self)
This is the resource manager constructor. An empty list will be created to save

the resources.

addResource(self, resource)
Add the specified resource to resources database.

removeResource(self, resource)
Remove resource from resources database.

resourceQuery(self, resource)
The search result matching the resource in resources database will be

returned in a list. The criterion for matching the query is the specified

resource name.

resourcesList(self)
Print available resources.

Chapter 5 – Classes and Methods

 17

Class Server

This class is used to accept new TCP connections. It is a multi-thread server with

one thread per new TCP connection. The Figure 15 illustrates the data structure

of the server.

Host Port Socket

Figure 15 – Data structure of the server.

Next the methods of the Server class will be described.

__init__(self, host = None, port = None)
This is the server constructor. If the host and port are not specified the server

will start running on the default host “localhost” and port 11844. Otherwise it

will start to run in the given host and port.

now(self)
Return the current time.

serverThread(self, connections, sockets,
neighborsList, connectedNeighbors, fileName)
Listen for new TCP connections and add them to connections database.

The sockets of the connections will be added to sockets database.

addNeighborsList(self, neighborsList,
connectedNeighbors, connection, fileName)
If the Id (<host:port>) is unknown it will be added to neighborsList

database. Otherwise the position database of the neighbor will be returned. This

position will be used to determine the new connected neighbor.

Chapter 5 – Classes and Methods

 18

closeConnection(self)
Close the socket of the server.

getHostPort(self)
Return the Id (<host:port>) of the server socket.

Class ConnectionManager

This class is used to manage connections, to process requests, to receive and send

queries. The established connections are always being verified by a thread. The

available data to read from the connections will be immediately processed. The

queries can be sent, received and forwarded. ConnectionManager will provide all

the methods of the middleware. The Figures 16 and 17 illustrate the data

structures of the connection manager.

Connection

Connection

Connection

Connection

.

..

List of Connections

Figure 16 – List of Connections. Data structures of the connection manager.

Chapter 5 – Classes and Methods

 19

Socket

Socket

Socket

Socket

.

..

List of connected neighbors

Figure 17 – List of connected neighbors. Data structures of the connection
manager.

Next the methods of the ConnectionManager class will be described.

__init__(self, neighborsFile, numberOfConnections,
portNumber, application)
This is the connection manager constructor. The connections database, the

sockets database, the messages database, the connected neighbors database and a

thread to check connections will be created.

resourceRegister(self, resource, value)
Add a resource to resources database.

printResources(self)
Print resources.

sendQuery(self, resource)
Send a query to connected neighbors to look for the specified resource name.

readNeighborsFromFile(self, neighborsFile)
Read the Ids from the neighborsFile to neighbors database.

Chapter 5 – Classes and Methods

 20

ConnectToNeighbors(self, neighborsList,
numberOfConnections, portNumber)
Establish a specified number of TCP connections with own neighbors.

printList(self, List)
Print the list.

checkConnections(self)
The selector is used to check if there are sockets with data to read. The available

data to read will be received.

receiveDataFromSockets(self, availableSocketsToRead)
Receive data from sockets. The received messages will be processed. If some

messages are not properly received the connection and the socket will be

removed and a new connection will be established to keep the amount of

connections.

removeSocket(self, socket)
Remove the socket and return the position of the removed socket.

removeConnection(self, position)
Remove the connection at the specified position and return its Id.

upgradeNeighborState(self, Id)
Delete the specified Id from connected neighbors database. Add the specified

Id to neighbors database.

processMessage(self, message, socket)
Verify if the query is a request or a reply. Send a message reply if there is at least

one available resource that matches with the request. The time to live (ttl) will be

always decreased by one. If ttl is zero after being decreased, the message will be

dropped. Otherwise the query will be forwarded to all neighbors if resource is

found and the time to live (ttl) is still greater than zero.

Chapter 5 – Classes and Methods

 21

verifyMessageId(self, messageId, ipPort)
Verify if the list of messages has the specified messageId. The position of the

messageId will be returned if the messageId will be found. This method is

used to drop repeated messages and prevent cycles among nodes.

getIpPortFromSocket(self, socket)
Return the host name of the specified socket.

addMessage(self, messageId, ipPort)
Add the pair (<messageId>, <ipPort>) to messages database. The

messages database will keep the maximum amount of fifty pairs. The first

elements will be replaced after that.

getSocketByIpPort(self, ipPort)
Return the socket with the specified ipPort.

Chapter 5 – Classes and Methods

 22

MP2P Communication Center
Application for Nokia 770

The purpose of MP2P Communication Center application is to provide real-time

chat communication among multiple users. This application can be used by the

students to subscribe to a specific lecture course. All the students joined in the

same lecture course can read and add information to it. Lecture modifications will

be visible to the lecture group.

Figure 18 illustrates the position of the Application among layers of software and

hardware.

Figure 18 - Location of the Application in the structure of the software and the
hardware.

Chapter 5 – Classes and Methods

 23

Class Application

This class uses Mobile Chedar Middleware for Nokia 770 to provide the

following functionalities to the users: locate stream, join stream, publish stream,

update stream and close stream. The Figure 19 illustrates the data structures of

the application.

Name of the stream Content of the
stream

List of
associated

sockets

Socket

Socket

Socket

Socket

.

..

Stream

Stream

Stream

Stream

.

..

List of streams

Figure 19 – Data structures of the application.

Next the methods of the Application class will be described.

__init__(self, filename, interface)
This is the application constructor. A list of streams will be created. Each element

of this list is a pair. The first element of the pair is the name of the stream and the

second element is a hierarchic pair. The first element of this hierarchic pair is the

content of the stream and the second element is a list of associated sockets. The

Chapter 5 – Classes and Methods

 24

Connection Manager will be instantiated and a multi-thread application server will

be created to listen for new connections.

receive(self, resourcesList)
Receive the resourcesList provided by the middleware.

request(self, resource)
Call the available method of Middleware to request neighbors about the specified

resource.

addResource(self, resource, value)
Call the available method of Middleware to add the specified resource with

the specified value.

getResources(self)
Call the available method of Middleware to print resources database.

closeStream(self, streamName)
The sockets associated to the specified streamName will be closed and

removed.

serverThread(self)
Listen for new TCP connections. Available data will be received through the new

sockets. The new user will be added if received data matches with expected bytes

defined by the protocol.

addUser(self, streamName, clientSocket)
The client socket will be added to streams database. A thread to check available

data to read sockets of the specified stream will be created.

createStream(self, streamName, contentStream)
A new stream with the streamName will be created. The blank spaces will be

replaced by underscores. The stream location will be created according to the

Chapter 5 – Classes and Methods

 25

rules defined by the protocol. Finally call the available method of Middleware to

add this new resource, and add the new stream to streams database.

checkConnections(self, sockets, streamName)
The selector is used to check if there are sockets with data to read. The

available data to read will be received. An update will be done on streams

database and sent to the user interface if the first seven bytes match with

expected bytes defined by the protocol. Otherwise the socket will be removed

from streams database.

joinStream(self, streamName, host)
The specified host will be parsed to get the ip and port. A new TCP connection

to these ip and port will be established. A join message defined by the protocol

will be sent through the new socket. This socket will be added to the streams

database. The available method of Middleware will be called to add the resource,

and the stream to streams database. A thread to check available data to read

sockets of this new specified stream will be created.

updateStream(self, streamName, newText)
The new specified text will be added to the content of the specified stream and

updated on streams database. An update message defined by the streaming

protocol will be sent through the associated sockets.

MP2P Communication Center User
Interface for Nokia 770

The user interface contains the elements of the computer screen that user

interacts with. This includes visual appearance, icons, navigational elements and

request for text.

Chapter 5 – Classes and Methods

 26

Figure 20 illustrates the position of the User Interface among layers of software

and hardware.

Figure 20 - Location of the User Interface in the structure of the software and the
hardware.

Class User Interface

This class is used to create all windows, buttons and dialog boxes. The next

figures show the application running on Nokia 770 and its representation with

GTK objects. [9]

Chapter 5 – Classes and Methods

 27

Figure 21 – Application running in Nokia 770.

gtk.Window

gtk.Entry gtk.Button gtk.Button gtk.Button

gtk.VPaned

gtk.ScrolledWindow

gtk.TreeView

gtk.ListStore

gtk.ScrolledWindow

gtk.TextView

gtk.Notebook

gtk.Fixed
gtk.Vbox

Figure 22 – Representation of the search view with GTK objects.

Chapter 5 – Classes and Methods

 28

gtk.Dialog

gtk.VBox

gtk.Entry

Figure 23 – Representation of the create stream dialog with GTK objects.

Chapter 5 – Classes and Methods

 29

Figure 24 – Application running in Nokia 770.

gtk.Window

gtk.VPaned

gtk.ScrolledWindow

gtk.TextView

gtk.Notebook

gtk.Fixed

gtk.HBox

gtk.Entry gtk.Button

Figure 25 – Representation of the stream view with GTK objects.

Chapter 5 – Classes and Methods

 30

Next the methods of the User Interface class will be described.

__init__(self)
This is the user interface constructor. This method is used to create a new

window, a notebook, a fixed container, a vertical box, a single text line entry field,

a text view, a scrolled window and the buttons. An empty list will be created to

save the displayed items. Each element of this list is a triple. The first element of

the triple is the name of the stream. The second element of the list is a buffer.

This buffer contains the displayed text. The third element is a text view. This text

view will display the text contained in the buffer.

Callback Functions

Callback functions are passed (by reference) to another function. The other

functions call the callback functions under defined conditions (for instance

navigation in the scroll window, a button click, etc.) The Callback functions are

displayed below.

locateMessage(self, widget, entry, application)
Call the available method in the application to request the stream specified

in the text line entry field. Create an empty list to save the request results.

closeMessage(self, widget, application)
Call the available method in the application to close the displayed stream.

The displayed tab will be closed.

createStream(self, widget, application)
Create a new dialog box to write the name of the stream.

Chapter 5 – Classes and Methods

 31

joinMessage(self, widget, application)
Call the available method in the application to join to a stream. Create a

fixed container and append it to the notebook. Create a container with two panes

arranged vertically and add it to the fixed container. Create a scrolled window and

add it to the last created container. Create a text view and add it to the scrolled

window. Create a horizontal container box. Create a single line text entry field

and add it to the horizontal container box. Create the close stream button and

add it to the horizontal container box.

enter(self, widget, entry, buffer, application,
streamName, view)
The text contained by the text view will be shown in the scrolled window.

newStream(self, widget, entry, application, dialog)
The displayed dialog box will be destroyed. Call the available method in the

application to create a stream. Create a fixed container and append it to the

notebook. Create a container with two panes arranged vertically and add it to the

fixed container. Create a scrolled window and add it to the last created container.

Create a text view and add it to the scrolled window. Create a horizontal

container box. Create a single line text entry field and add it to the horizontal

container box. Create the close stream button and add it to the horizontal

container box.

cursorChangedHandler(self, treeview, buffer)
Add location, ip and port of the selected element to the text view and show it in

the scrolled window.

receiveList(self, messages)
Receive the list of streams provided by the application.

Chapter 5 – Classes and Methods

 32

upDate(self, streamName, newData)
Receive updates provided by the application and add them to the text view. The

updates will be displayed in the scrolled window.

create_list(self, buffer)
Create a scrolled window. Create an empty list and display it in the scrolled

window.

insert_text(self, buffer, text)
Add text to the text view.

create_text(self, text)
Create a scrolled text area to display the specified text.

Chapter 6 – Tests

 33

C h a p t e r 6

TESTS

Mobile Chedar Middleware Tests

All the implemented functionalities were tested during the project to identify

problems and to assure software reliability. Good performance results were

achieved. An official demonstration was also provided. The Figure 26 illustrates a

communication between two nodes. The first node starts a query to request a

resource. The resource is found in the second node and provided through a

resource reply.

Mobile Chedar

Node

Mobile Chedar

Node

resource query

Resource
found

resource reply

Figure 26 – First test: resource query and resource reply.

The Figure 27 illustrates a communication among three nodes. The first node

starts a query to request a resource. The resource is not found in the second node

Chapter 6 – Tests

 34

and the query is forwarded. Finally the resource is found in the third node. A

reply is immediately provided by the third node and forwarded by the second

node.

Figure 27 – Second test: resource query, resource reply and forward query.

The Figure 28 illustrates a communication among four nodes. This test assures

that the above functionalities also work properly with more nodes. However the

main goal was to test the functioning with different values of ttl. When ttl was

zero after being decreased, the message was always dropped.

Figure 28 – Third test: resource query, resource reply and forward query.

Chapter 6 – Tests

 35

The Figure 29 illustrates a communication among four nodes. The node located

on the left is sending a query to its neighbors. The node located on the right will

receive two forwarded messages with the same content. The main goal of this test

is verifying if a repeated message is dropped.

Figure 29 – Fourth test: resource query, resource reply and forward query.

The Figure 30 illustrates a communication among four nodes and verifies the

above tests with a different topology.

Figure 30 – Fifth test: resource query, resource reply and forward query.

Chapter 6 – Tests

 36

Figure 31 illustrates Mobile Chedar working properly with Chedar P2P Network.

Figure 31 – Sixth test: resource query, resource reply and forward query between
Mobile Chedar and Chedar P2P Network.

MP2P Communication Center Tests

Several tests were provided on the application side. The Figure 32 illustrates a

communication among four nodes. All the application functionalities worked

properly in these tests.

Chapter 6 – Tests

 37

Figure 32 illustrates a communication among four nodes. The main goal of this

test was verifying if the updates and joins to the created stream were properly

working. The node on the left joins to the stream “Special Assignment”. It will

send also an update with “Final Report” to its neighbor. Finally the update will be

forwarded to all the neighbors that subscribed the stream “SpecialAssignment”.

Join SpecialAssignment

Update Final Report!

Update Final Report!

Update Final Report!

Figure 32 - Join Message, Update messages and forwarded updates.

Chapter 7 – Future Work

 38

C h a p t e r 7

FUTURE WORK

Tests

The future work concentrates on field and performance testing. The field tests

should be done to determine how the software works when it is used by multiple

devices in a lecture. The performance tests should be done to determine the data

transfer rates, delays, consumption of processing power and the general suitability

to different application domains.

Additional Features

Nokia 770 provides access to the web over WLAN but it is also designed to meet

Bluetooth Specification 1.2. Bluetooth communication could be added and used

when Wireless LAN is not available.

The neighbors of a node are specified in the configuration file. Another option is

to implement broadcast or UDP multicast to discover all the available devices

within the same WLAN network.

Other important features are blocking malicious users to avoid their updates and

deletion/modification of rows of the stream to allow manually modifying the

stream content. The removed rows won’t be visible to all the users that are

subscribing the same lecture. The idea is keeping the most import information of

the stream from the user’s point of view.

Chapter 7 – Future Work

 39

New Applications

Peer-to-Peer technologies have received a lot of publicity lately mainly because of

Napster and other peer-to-peer systems mostly developed for distributing music

and movies in the Internet. An application to share music and movies can be

developed to run on the top of the Mobile Chedar Middleware. It can be used for

instance by lectures to distribute video and mp3 of their lessons.

The concept of Peer-to-Peer is increasingly applied to a wide range of areas. An

application can be developed for instance to share local maps. This could be

useful while we are traveling. When we are lost we can download local maps from

our neighbors and find our way.

Chapter 8 – Working Hours

 40

C h a p t e r 8

WORKING HOURS

This project was divided into following phases shown in the Figure 33:

Figure 33 – Phases of the project.

All the stages of the project were undertaken in University of Jyväskylä at Agora

Center. In my opinion this was a nice place for working and living with challenge.

Before taking this project I never had any experience on research side. This was

an excellent opportunity to work with a research team and learn same practices to

publish results in articles and scientific papers. The Peer-to-Peer distributed

Chapter 8 – Working Hours

 41

systems group of Department of MIT is very well disciplined and organized. All

needed support was provided during this project.

Chapter 9 – Conclusion

 42

C h a p t e r 9

CONCLUSION

A Mobile Chedar Middleware and a Mobile Peer-to-Peer application for the

Nokia 770 mobile device were developed by me with the purpose of getting an

extension of Chedar system to the Nokia 770 mobile device

(http://www.nokia.com/770). All established goals were achieved. The Mobile

Peer-to-Peer application for group communication in real-time and the user

interface were developed as optional features. All the implemented functionalities

were tested during the project to identify problems and assure software reliability.

Good performance results were achieved. However all the tests were done in a

simulator because the Nokia mobile devices are not available yet. The field and

performance tests might be done in the real devices to confirm the software

reliability. But similar results are also expected from the real devices because

Nokia 770 is powered by Maemo with a Linux distribution.

This document contains important information that can be used to write articles

and to develop other Mobile Peer-to-Peer applications. It is essential to describe

technical knowledge and how to apply it in specific situations.

This was my first practical experience with Mobile Peer-to-Peer Distributed

Systems. I learned how to program in Python and use GTK+ on it (PyGTK).

PyGTK [5] provides a convenient wrapper for the GTK library for use in Python

programs, and takes care of many of the boring details such as managing memory

and type casting. After user interface implementation I got a good background on

GTK library management [9]. During my degree I have got from my University

Chapter 9 – Conclusion

 43

(http://www.fct.unl.pt) [10] good technical background. The acquired knowledge

was very important for this project. TCP over WLAN was studied in Computer

Networks Complements course. A wide experience with several programming

languages was useful to achieve a good background with python programming

language. The Breadth-First-Search algorithm was studied in Introduction to

Artificial Intelligence course. Distributed Systems course gave me a good

knowledge about Peer-to-Peer distributed systems. This project was the most

important challenge of my studies.

Chapter 10 – References

 44

C h a p t e r 1 0

REFERENCES

[1] Cheese Factory. http://tisu.it.jyu.fi/cheesefactory/index.shtml

[2] Wikipedia.org. http://www.wikipedia.org/

[3] Maemo.org. http://www.maemo.org/

[4] Coulouris G., Dollimore J. and Kindberg T., Distributed Systems

Concepts Design Addison-Wesley, Third Edition, 2001

[5] PyGTK. http://www.pygtk.org

[6] Kotilainen N., Weber M., Vapa M., Vuori J., “Mobile Chedar – A

Peer-to-Peer Middleware for Mobile Devices”, Workshops

Proceedings of the Third IEEE Conference on Pervasive Computing

and Communications (Percom 2005), pp. 86-90, Kauai Island, USA,

2005.

[7] Gmail. http://www.gmail.com/

[8] Google Maps. http://maps.google.com/

[9] GTK Class Reference. http//www.pygtk.org/pygtk2reference/gtk-

class-reference.html

[10] Faculty of Science and Technology, New University of Lisbon:

http://www.fct.unl.pt/

Chapter 10 – References

 45

For more information see:

• Pilgrim M., Dive Into Python. This book lives in

http://diveintopython.org/

• Swaroop H., A Byte of Python. This book lives in

http://byteofpython.info/

• Lutz M. and Ascher D., Learning Python O’Reilly, Second Edition,

2003

