
  

    

Abstract— Resource discovery is an essential problem in peer-

to-peer networks since there is no centralized index in which to 

look for information about resources. In a pure P2P network 

peers act as servers and clients at the same time and in the 

Gnutella network for example, peers know only their neighbors. 

In addition to developing different kinds of resource discovery 

algorithms, one approach is to study the different topologies or 

structures of the P2P network. In many cases topology 

management is based on either technical characteristics of the 

peers or their interests based on the previous resource queries. In 

this paper, we propose a topology management algorithm which 

does not predetermine favorable values of the characteristics of 

the peers. The decision whether to connect to a certain peer is 

done by a neural network, which is trained with an evolutionary 

algorithm. Characteristics, which are to be taken into account, 

can be determined by the inputs of the neural network. 

I. INTRODUCTION 

Peer-to-peer technologies have received a lot of publicity 

lately mainly because of Kazaa and other peer-to-peer file 

sharing systems. Other resources, for example CPU time and 

storage space, can also be shared in a peer-to-peer network. In 

the P2P network every peer, i.e. a node may provide resources 

to other nodes and consume the resources other nodes are 

providing. This means that a node may serve both as a server 

and as a client. The P2P network can be structured or 

unstructured. In an unstructured network, like Gnutella and in 

our study, a node's place in the network is not pre-defined like 

it is in a structured network. A node may join the network by 

establishing a connection to another node in the P2P network. 

Resource discovery is not very efficient in that kind of  

network but maintaining the topology does not produce extra 

work. 

Topology management algorithms affect the network's 

overlay topology by making the network more scalable and 

effective for resource discovery. Nodes want to stay connected 

to the network and find resources efficiently without using too 

much of their own capacity for being in the network. It is 

suitable for example that the nodes connecting with a modem 

are in the edge of the network and the nodes capable of 

handling a lot of traffic are in the center. With topology 

management algorithms the network can be kept connected, 
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i.e. there are no clusters, which are not connected to each 

other. 

In our research project we have developed four algorithms 

for topology management [2]. In this paper we propose a 

different kind of solution. We used neural networks to create 

the algorithm by machine instead of constructing algorithm by 

humane hand. The neural network gets the characteristics of 

the P2P network as inputs and as an output the decision 

whether to create a connection to a certain node. 

The paper is organized as follows. We present related work 

in Section II. Section III describes the developed 

NeuroTopology algorithm for managing the topology of 

unstructured P2P networks. The optimization process is 

described in Section IV. Section V presents the test case used 

in the study and Section VI the analysis of the simulation 

results. The paper is concluded in Section VII. 

II. RELATED WORK  

Much research has been done regarding the efficiency of a 

pure unstructured P2P network by changing the structure or 

the topology of the network. One way to approach the problem 

is to organize the nodes so that they form up clusters according 

to their interests of the previous resource queries (interest-

based locality). Ramanathan et al. [9] searched for good 

neighbors by connecting to those peers that repeatedly give 

good results and disconnecting those peers that give poor 

results. As a result, peers have few neighbors and they form 

clusters where resources of the same interest are close to each 

other. Because there are only few connections between 

clusters, this is not efficient if peers are interested in resources 

from multiple subjects or suddenly change their interest. 

Sripanidkulchai et al. [11] formed shortcuts in the Gnutella 

network to peers that, based on the previous queries, are 

interested in resources of the same topic. The shortcuts form 

their own logical network on top of the Gnutella topology, 

which is therefore not changed. When resources are searched, 

the shortcut topology is used first and if resources are not 

found, the Gnutella topology is used traditionally. Condie et al. 

[3] developed a protocol that connects to peers that will 

probably give good results in the future. This is based on a 

score assigned to peers according to their previous answers. In 

addition, the reliability of the peer is also scored in order to 

reduce the effect of freeriders and malicious peers distributing 

corrupted files. In the study, poor peers moved to the edge of 

the network and other peers formed clusters according to their 

interest of resources. Crespo and Garcia-Molina [6] have 

suggested Semantic Overlay Network or SON, where joining 
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peers connect into one or more logical clusters based on the 

content of peers’ resources and the available SON-networks in 

the P2P network. 

Another way to approach the topology problem is to take 

into account only the technical characteristics of the peers e.g. 

bandwidth or traffic amounts. These techniques do not 

consider the query history or the quality of the resources. 

Cooper and Garcia-Molina [4] made the overloaded peer to 

disconnect neighbors that are burdening the link most or 

neighbors that overrun some predetermined traffic limit. In the 

study, it was also possible to concentrate on favoring efficient 

peers instead of helping overloaded peers.  

The studies presented above are concentrating on a single 

problem or characteristic of the P2P network. As a result, 

techniques that use the interest-based clustering are forming 

topologies where popular nodes are under lot of strain. Similar 

to this, in the techniques where only technical characteristics 

are taken into account, one might discriminate the nodes that 

have good resources and weaken query times. Sakarayan and 

Unger [10] measured the evolution of a P2P topology when it 

was affected by traffic overloading and interest-based 

clustering. During resource searching, information about peers 

is gathered into messages and therefore peers know more peers 

than just their neighbors. This information consists of data 

about resources owned by the peers, addresses and how long 

the message was in a peer. The algorithm that reacts to traffic 

overloading wakes up when the queue of incoming messages 

exceeds some limit and sends warnings to nearby peers. Peers 

re-route messages to avoid traffic. The algorithm that affect 

interest-based locality wakes up when access times or the 

distance that messages pass exceed some limit. According to 

this study, locally operating algorithms can affect the 

efficiency of the network also in the scale of the Internet. 

Iles and Deugo [7] developed a meta-protocol that works 

with the BFS algorithm. The evolution of the meta-protocol is 

guided by genetic programming and it produces P2P protocols 

as implementations. These protocols define the topology of the 

P2P network. Two expressions affect the evolution of the 

meta-protocol: CONN, which is the amount of neighbors that 

is desirable for each peer to have and RANK, which is a 

comparison indicator for each possible neighbor. The CONN-

expression uses information like current neighbor amount and 

statistical information about the traffic amount of the peer. The 

RANK-expression uses mostly information that is related to 

the previous queries and their success. Measuring the success 

of the evolutionary process is done with the fitness 

function:

outtimedsuccessful searchessearchesfitness −+= *5.0 . In 

the study it was noticed, that the protocol used by Gnutella is 

in many cases optimal and that P2P networks, where 

bandwidths are small, form clusters still remaining connected. 

It was also noticed, that genetic programming is an effective 

search technique for the Gnutella networks and it produces 

peers that are adjustable in a varying environment. The 

problem of the study was small network with only 30 peers. 

In this study, we do not predetermine any values of the 

characteristics that are desirable for the P2P network. Instead 

we try to find out whether the evolutionary neural networks are 

able to form efficient P2P topologies for resource queries 

when we determine the characteristics that the neural network 

should take into account. These characteristics are given to the 

neural network as inputs and can be e.g. bandwidth or 

information about the previous resource queries. As a result, 

we hope to gain a dynamic P2P network, where the topology 

takes shape in interaction with the resource discovery 

algorithm.  

III. NEUROTOPOLOGY ALGORITHM 

NeuroTopology algorithm affects the overlay of the peer-to-

peer network by using a neural network for the topology 

construction. NeuroTopology was implemented as a plugin for 

the P2PRealm simulator [8]. 

The idea is that every peer has a neural network to make 

decisions about establishing new connections in the P2P 

network (Fig. 1). The information that the neural network 

needs, is gathered during resource queries. NeuroTopology 

algorithm is executed in every peer after a predefined amount 

of resource queries. The NeuroTopology  is described in 

Algorithm 3.1: 

Algorithm 3.1. 

Input: The node’s u neighbor candidates are 

{ }LwwsssN hk ,,...,,...,, 121= , where 2,1 −≤−≤ nhnk , si is 

the node’s neighbor, wi is the node’s neighbor’s neighbor and 

L are the nodes, from which the node has received resource 

replies. T  is the number of topology packets i.e., the amount 

of traffic topology requests produced. aT is the number of 

topology replies i.e., the amount of traffic produced when 

establishing a new connection.  

Output: Connections to neighbors. 

For all Nbi ∈  

1. The input parameters for the neural network are set 

according to the information about neighbor candidate bi. 

 2. Calculate the output for the candidate bi. 

 3. If the output is 1 then 

3.1 Node u requests candidate bi to be its neighbor. 

The number of topology packets is incremented by one: 

t = t + 1. 

3.2 The input parameters for the neural network are set 

according to the information about node u. 

  3.3 The output for node u is calculated. 

3.4 If the output is 1, the connection between nodes u 

and bi is confirmed and the number of topology replies 

is incremented by one ta = ta +1. 

3.5 If the output is 0, node bi does not accept the 

request. The number of topology packets is 

incremented by one t = t +1. If bi is a neighbor of node 

u, the connection to node u is dropped. 

4.  If the output is 0 and bi is a neighbor, the connection 

to node bi is dropped. 



  

The algorithm goes through all neighbor candidates. A 

connection to a candidate is not established one-sided but also 

the candidate evaluates with the same neural network whether 

it wants to establish a connection to the requesting node.  

The input parameters for the neural network are: 

• Bias is the bias term and has value 1. 

• CurrentNeighborsAmount is the number of the node's 

neighbors.  

• ToNeighborsAmounts is the number of the node's 

candidate neighbor’s neighbors.  

• RepliesFromCandidates is the number of resource 

replies received from a candidate neighbor. 

• RelayedRepliesFromCandidates is the number of 

resource replies which a candidate neighbor has 

relayed to the node. 

• TrafficMeter is a counter, which calculates the amount 

of resource reply messages going through a candidate 

neighbor. 

• TrafficLimit simulates the bandwidth of a candidate 

neighbor. If TrafficMeter value is bigger than 

Trafficlimit, the candidate neighbor will not reply to 

resource requests.  

All input parameters should be scaled in [0,1] so that any 

parameter will not be dominant, thus slowing down the 

optimization. RepliesFromCancidate, TrafficMeter and 

RelayedRepliesFromCandidate can have value of zero so 

those are scaled with the function  

1
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NeuroTopology uses a neural network with two hidden 

layers. There are 15 nodes (neurons) and a bias in the first 

hidden layer and 3 nodes and a bias in the second. The 

activation function in the hidden layers is the hyperbolic 

tangent (tanh)  
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The activation function in the output node is the threshold 

function 
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The output of the neural network is attained by combining 

the functions presented above and output values of the 

neurons’ with the formula  
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where 
iI  is the value of input parameter i and

xyw is the neural 

network weights on layer x in position y. 

 
Fig. 1: The neighbors of the peer are determined with the neural network that 

receives information about neighbor candidates in its inputs. 

 

IV. NEURAL NETWORK OPTIMIZATION 

Before NeuroTopology can be used for managing the 

topology, the weights of the neural network have to be 

optimized. We used evolutionary computing to optimize the 

weights. 

The fitness of the used neural network is defined based on 

the amount of traffic in the P2P network. Each query j (both 

resource and topology queries) is scored for the neural 

network h and the fitness is sum of scores Fj. 
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The scores are defined as follows: 
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Where p is the number of resource queries, r is the number 

of resource replies, R is a constant which affects the impact of 

the replies and the sent packets on the scoring, t is the number 

of  packets the topology query used, at is the number of new 

connections and T is a constant which affects the impact of 

new connections on the scoring. G is the goal for the number 

of the resources the resource query should locate.  

When measuring the performance of the P2P network in the 

generalization environment (see Section V), the formula 4.1 is 

used. If there are enough replies for the queries, the neural 

network will receive better fitness values by decreasing the 

amount of packets: )( aj TttpRrF ++−= . If there are not 



  

enough resources in relation to the sent packets, the neural 

network will attain better fitness values by increasing the 

amount of packets: 
RrTttp

F
a

j
−++

=
1 . 

When training the neural network, formula 4.2 is used. If the 

network locates the predefined amount of resources, the score 

from replies is doubled. Then the neural network can attain 

better fitness values by decreasing the number of packets and 

topology packets. Especially, the number of new connections 

is encouraged to be decreased with )(2 aj TttpRrF ++−= , 

because the current topology already has some desired 

properties. If there are enough resource replies when the sent 

packets are taken into account (also the topology packets) but 

the goal is not achieved, the neural network will attain better 

fitness values by increasing the amount of topology packets: 

)( pttRrF aj −++= . If there are not enough located resources 

in proportion to sent packets, the neural network will attain 

better fitness values by increasing the amount of query and 

topology packets: 
RrTttp

F
a

j
−++

=
1

. 

The optimization process had an initial population of 24 

neural networks whose weights were randomly defined from 

the [-0.2, 0.2] interval. Next, every neural network was tested 

in the peer-to-peer simulation environment and the fitness 

value was calculated. When all neural networks had been 

tested, the 12 best were chosen for mutation and used to breed 

the new generation of neural networks. As a result, 24 neural 

networks were available to be tested at the next generation. 

The mutation was based on the Gaussian random variation 

and used the weighted mutation parameter to improve the 

adaptability of the evolutionary search. The random variation 

function was similar to the one used by Fogel and Chellapilla 

in their research [5] and is given as: 

       ,,...,1)),1,0(exp()()(' wjii NjNjj == τσσ  

       ,,...,1),1,0()()()(' wj

j

iii NjNjjwjw =+= σ  

where wN =  is the total number of weights and bias terms 

in the neural network, 

wN2

1
=τ

, )1,0(jN  is a standard 

Gaussian random variable resampled for every j, σ is the self-

adaptive parameter vector for defining the step size for finding 

the new weight and )(' jwi
 is the new weight value. This method 

can be seen as a memetic algorithm because when the self-

adaptive parameter iσ  is small, the optimization is local. 

V. SIMULATION ENVIRONMENT 

As a peer-to-peer simulation environment, we used the Peer-

to-Peer Realm (P2PRealm) network simulator [8] which was 

originally developed for studying a resource discovery 

algorithm based on neural networks [12]. In this research, we 

added a neural network guided topology management 

algorithm to P2PRealm.  

In the test case we used a P2P network that had 100 peers. 

Resources were power-law distributed so that peers with small 

peer numbers had more resources than others. The amount of 

resources was 491 and there were 25 different kinds of 

resources. Each peer had a traffic limit which determined the 

maximum amount of resource packets during 10 resource 

queries. The traffic limits were: 

- Nodes 0-24, traffic limit=30 

- Nodes 25-49, traffic limit=15 

- Nodes 50-74, traffic limit=10 

- Nodes 75-99, traffic limit=6 

The resource discovery algorithm had a target of finding 

50% of the desired resources. The goal of finding half of the 

available resource instances was set to demonstrate the 

algorithm's ability to balance on a predetermined quality of 

service level and not just on locating all resource instances or 

one resource instance. We used breadth-first search (BFS), 

highest degree search (HDS) and random walker (RW) as 

resource discovery algorithms.  

The test case is divided into the training environment, where 

the neural networks are trained and the generalization 

environment, where the performance of the best neural 

network is measured in a new but similar environment 

indicating the neural network’s ability to generalize. When the 

performance starts to decrease in the generalization 

environment, the training can be stopped. At that point the 

neural network is adapting only to the training set if the 

training process is continued. In the training set each 

generation is started with a grid topology P2P network and 

follows the algorithm: 

1. Do rounds 20 times  

a. 10 random peers execute resource queries 

b. Execute NeuroTopology algorithm in every 

peer using information from resource queries 

2. Execute 10 resource queries in the P2P network 

3. Calculate the fitness for the neural network using 

information from step 2 

The generalization set is the same as the training set, except 

that resource queries were executed by every peer in the P2P 

network. In order to keep traffic limits functioning properly, 

the traffic meters were reset after every 10 queries. Another 

difference is in the use of the fitness function (Section IV). In 

the training set the parameter R was 300 and in the 

generalization set the value is 50. The parameter R can be 

considered as a reward for founding resources and the value 

300 produces consistently well-trained neural networks. R was 

selected to be large enough to guide the training process 

towards neural networks that locate enough resources, but also 

small enough to prevent nodes from connecting to all the 

neighbors that have wanted resource during some random 

query. In the generalization set the value 50 was chosen as a 

standard value for comparing the neural networks that were 

trained with different kind of attribute values. The value of 

parameter T was 5 in both environments. This penalty term 

simulates the amount of TCP-packets when establishing new 

connections. 



  

The training of the neural networks was done using the HDS 

algorithm and the amount of generations was 5000. The results 

of the test case are represented in Fig. 2-6. In the training set 

there is no significant improvement in the fitness value after 

generation 400 but some optimization still took place because 

in the generalization set the fitness is not converging until 

generation 3500. In the generalization set the HDS algorithm 

finds desired resources (845 of them) most of the time after 

generation 400, but the amount of packets is decreasing until 

generation 3500. Also the topology packets, the topology 

changes and the amount of failed queries remain relatively 

stable after generation 3500. “Failed queries” represents the 

amount of nodes that do not reach their target of 50% found 

resources. Thus, it was possible to train the neural networks in 

a computationally easier environment and to use the trained 

networks in a more demanding environment. 

 

 
Fig. 2: Fitness in the  training environment. 

 
Fig. 3: Fitness in the generalization environment. 

 
Fig. 4: Resource packets and replies in the generalization environment. 

 
Fig. 5: Topology queries and replies in the generalization environment. 

 
Fig. 6: Number of nodes that did not find 50% of all the resources in the 

generalization environment. 

VI. SIMULATION RESULTS 

To evaluate the efficiency of the topology that is produced 

with the trained NeuroTopology algorithm, in addition to the 

grid topology, we generated a power-law topology and a 

random graph topology for comparison. The power-law 



  

topology was generated using the Barabási-Albert model and 

the random graph topology using the Erdös model [1]. 

Parameters for the traffic limits, resource distribution and 

fitness function are the same as in the generalization set of the 

training neural network. The results of the networks where 

peers are searching resources with highest degree search 

(HDS), random walker (RW) and breadth first search with 

TTL value 3 (BFS) in the above mentioned topologies, are 

documented in Table 1. By calculating the ratio between the 

located resources and the used query packets, we can 

determine the efficiency of the algorithms. Walker algorithms 

(HDS and RW) perform best in the power-law topology 

finding nearly all resources with an efficiency of 0.23 and 0.18 

respectively. The best topology for the BFS algorithm is the 

random graph, where 470 of 845 desired resources were found 

with an efficiency of 0.14. Only 13 peers reached the target of 

finding 50% of all the resources. 

Next, we analyze the effect of NeuroTopology with nine 

different scenarios: three different starting topologies using 

three different resource algorithms. Every peer executes 

resource queries and then executes the NeuroTopology 

algorithm that was trained using the HDS algorithm. This 

procedure is done 20 times and the results are in Table 2. In 

the efficiency columns the first one is counted with topology 

packets and the second one without them. When comparing the 

fitness values (rewarding every resource with 50 points) 

between Tables 1 and 2, we can see significant improvement 

in most of the cases. The power-law topology is the hardest 

one to improve. For example the HDS algorithm finds roughly 

the same amount of resources in the power-law P2P network 

and in the NeuroTopology generated P2P network but uses 

470 less packets in the latter one. Nevertheless, when 

considering the traffic used by the topology management, the 

fitness value remains roughly the same. A general observation 

from the results is that the NeuroTopology trained using the 

HDS algorithm is able to improve the efficiency of the walker 

algorithms regardless of the starting topology. The training 

was done using the HDS algorithm, which prefers nodes with 

high neighbor amount. The BFS algorithm prefers P2P 

networks where the neighbor distribution is more uniform. Due 

to the different nature of these algorithms, the neural network 

has not learnt to generate a topology, which improves the 

efficiency of both BFS and HDS at the same time. 

Values in Table 2 are average values of 20 rounds so they 

do not give us information about the convergence of the P2P 

network. A good topology algorithm would change the 

inefficient grid topology on the early rounds and limit the 

changes when the efficient topology has been reached. An 

example is in Fig 7 and Fig. 8. NeuroTopology started from 

the grid topology where the HDS algorithm was used. The P2P 

network has converged after 4 rounds of resource queries and 

topology changes. The topology after 20 rounds is presented in 

Fig 9.  

VII. CONCLUSION 

NeuroTopology has proved to be an adaptable algorithm for 

the P2P network topology management. P2P topologies 

generated by NeuroTopology are significantly more efficient 

than grid, random or power-law topologies. Nevertheless, 

managing topology produces traffic. One has to case-

specifically consider, how worthy it is to find resources with 

less query packets. For example, using the random walker in 

the power-law topology without NeuroTopology uses 12% 

more resource packets to find roughly the same amount of 

resources compared to using NeuroTopology. Adding the 

topology management traffic to the equation, the efficiency is 

roughly the same. Nevertheless, the results are encouraging 

and further research includes testing the algorithm in larger 

P2P networks.  

 

 

TABLE I 

EFFICIENCIES OF RESOURCE ALGORITHMS IN STATIC P2P TOPOLOGIES 

Algorithm Topology Fitness Packets Resources Failed 
Queries 

Hops Efficiency 

HDS Grid 30059 4791 697 24 47.93 0.145 

RW Grid 30449 4501 699 24 45.08 0.155 

BFS Grid 10302 2598 258 99 2.92 0.099 

HDS Power 38216 3634 837 6 36.34 0.230 

RW Power 36193 4507 814 7 45.07 0.180 

BFS Power 18293 4707 460 71 2.86 0.097 

HDS Random 28209 3891 642 45 38.97 0.164 

RW Random 26047 3603 593 50 36.07 0.164 

BFS Random 19340 3350 470 87 2.96 0.140 



 

 

 

TABLE 2 

EFFICIENCIES OF RESOURCE ALGORITHMS WHEN USING NEUROTOPOLOGY 

Algori
thm 

Topolog
y 

Fitness Improvement 
in Fitness 

Packets Resources Failed 
Queries 

Topology 
Packets 

Topology 
Changes 

Hops Efficiency Efficiency  
(only 

resource 
packets) 

HDS Grid 37502 24.76 % 3549 836 1 414 67 35.50 0.207 0.236 

RW Grid 34522 13.38 % 4272 795 10 486 94 42.72 0.164 0.186 

BFS Grid 22497 118.38 % 5833 589 57 510 122 2.93 0.091 0.101 

HDS Power 38130 -0.23 % 3164 838 1 366 48 31.64 0.234 0.265 

RW Power 37216 2.83 % 4010 837 1 384 48 40.10 0.188 0.209 

BFS Power 20768 13.53 % 5923 553 62 464 99 2.90 0.085 0.093 

HDS Random 37505 32.95 % 3409 834 2 456 66 34.10 0.212 0.245 

RW Random 35496 36.28 % 4382 815 6 497 75 43.83 0.165 0.186 

BFS Random 23382 20.90 % 5728 605 56 545 119 2.94 0.095 0.106 

 

 

 
Fig. 7: NeuroTopology manages to make the grid P2P network more 

effective for the HDS algorithm during the first four rounds of resource 

querying and topology changing. 

 

 

 
Fig. 8: The amount of topology changes convergences during the first four 

rounds. 

 
Fig. 9: End result P2P topology after 20 rounds when started from the grid 

topology. 

 

 

 

 

  
Fig. 10: Neighborhood distribution of the topology in Fig. 9. 
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