

Abstract— Resource discovery is an essential problem in peer-

to-peer networks since there is no centralized index in which to

look for information about resources. In a pure P2P network

peers act as servers and clients at the same time and in the

Gnutella network for example, peers know only their neighbors.

In addition to developing different kinds of resource discovery

algorithms, one approach is to study the different topologies or

structures of the P2P network. In many cases topology

management is based on either technical characteristics of the

peers or their interests based on the previous resource queries. In

this paper, we propose a topology management algorithm which

does not predetermine favorable values of the characteristics of

the peers. The decision whether to connect to a certain peer is

done by a neural network, which is trained with an evolutionary

algorithm. Characteristics, which are to be taken into account,

can be determined by the inputs of the neural network.

I. INTRODUCTION

Peer-to-peer technologies have received a lot of publicity

lately mainly because of Kazaa and other peer-to-peer file

sharing systems. Other resources, for example CPU time and

storage space, can also be shared in a peer-to-peer network. In

the P2P network every peer, i.e. a node may provide resources

to other nodes and consume the resources other nodes are

providing. This means that a node may serve both as a server

and as a client. The P2P network can be structured or

unstructured. In an unstructured network, like Gnutella and in

our study, a node's place in the network is not pre-defined like

it is in a structured network. A node may join the network by

establishing a connection to another node in the P2P network.

Resource discovery is not very efficient in that kind of

network but maintaining the topology does not produce extra

work.

Topology management algorithms affect the network's

overlay topology by making the network more scalable and

effective for resource discovery. Nodes want to stay connected

to the network and find resources efficiently without using too

much of their own capacity for being in the network. It is

suitable for example that the nodes connecting with a modem

are in the edge of the network and the nodes capable of

handling a lot of traffic are in the center. With topology

management algorithms the network can be kept connected,

Manuscript received March 15, 2007. This work was supported in part by

the Graduate School in Electronics, Telecommunications and Automation

(GETA).

A. Auvinen, T. Keltanen, and M. Vapa are with Department of

Mathematical Information Technology, University of Jyväskylä, Finland (e-

mail: firstname.lastname@jyu.fi).

i.e. there are no clusters, which are not connected to each

other.

In our research project we have developed four algorithms

for topology management [2]. In this paper we propose a

different kind of solution. We used neural networks to create

the algorithm by machine instead of constructing algorithm by

humane hand. The neural network gets the characteristics of

the P2P network as inputs and as an output the decision

whether to create a connection to a certain node.

The paper is organized as follows. We present related work

in Section II. Section III describes the developed

NeuroTopology algorithm for managing the topology of

unstructured P2P networks. The optimization process is

described in Section IV. Section V presents the test case used

in the study and Section VI the analysis of the simulation

results. The paper is concluded in Section VII.

II. RELATED WORK

Much research has been done regarding the efficiency of a

pure unstructured P2P network by changing the structure or

the topology of the network. One way to approach the problem

is to organize the nodes so that they form up clusters according

to their interests of the previous resource queries (interest-

based locality). Ramanathan et al. [9] searched for good

neighbors by connecting to those peers that repeatedly give

good results and disconnecting those peers that give poor

results. As a result, peers have few neighbors and they form

clusters where resources of the same interest are close to each

other. Because there are only few connections between

clusters, this is not efficient if peers are interested in resources

from multiple subjects or suddenly change their interest.

Sripanidkulchai et al. [11] formed shortcuts in the Gnutella

network to peers that, based on the previous queries, are

interested in resources of the same topic. The shortcuts form

their own logical network on top of the Gnutella topology,

which is therefore not changed. When resources are searched,

the shortcut topology is used first and if resources are not

found, the Gnutella topology is used traditionally. Condie et al.

[3] developed a protocol that connects to peers that will

probably give good results in the future. This is based on a

score assigned to peers according to their previous answers. In

addition, the reliability of the peer is also scored in order to

reduce the effect of freeriders and malicious peers distributing

corrupted files. In the study, poor peers moved to the edge of

the network and other peers formed clusters according to their

interest of resources. Crespo and Garcia-Molina [6] have

suggested Semantic Overlay Network or SON, where joining

Topology Management in Unstructured P2P Networks Using Neural

Networks

Annemari Auvinen, Teemu Keltanen and Mikko Vapa

peers connect into one or more logical clusters based on the

content of peers’ resources and the available SON-networks in

the P2P network.

Another way to approach the topology problem is to take

into account only the technical characteristics of the peers e.g.

bandwidth or traffic amounts. These techniques do not

consider the query history or the quality of the resources.

Cooper and Garcia-Molina [4] made the overloaded peer to

disconnect neighbors that are burdening the link most or

neighbors that overrun some predetermined traffic limit. In the

study, it was also possible to concentrate on favoring efficient

peers instead of helping overloaded peers.

The studies presented above are concentrating on a single

problem or characteristic of the P2P network. As a result,

techniques that use the interest-based clustering are forming

topologies where popular nodes are under lot of strain. Similar

to this, in the techniques where only technical characteristics

are taken into account, one might discriminate the nodes that

have good resources and weaken query times. Sakarayan and

Unger [10] measured the evolution of a P2P topology when it

was affected by traffic overloading and interest-based

clustering. During resource searching, information about peers

is gathered into messages and therefore peers know more peers

than just their neighbors. This information consists of data

about resources owned by the peers, addresses and how long

the message was in a peer. The algorithm that reacts to traffic

overloading wakes up when the queue of incoming messages

exceeds some limit and sends warnings to nearby peers. Peers

re-route messages to avoid traffic. The algorithm that affect

interest-based locality wakes up when access times or the

distance that messages pass exceed some limit. According to

this study, locally operating algorithms can affect the

efficiency of the network also in the scale of the Internet.

Iles and Deugo [7] developed a meta-protocol that works

with the BFS algorithm. The evolution of the meta-protocol is

guided by genetic programming and it produces P2P protocols

as implementations. These protocols define the topology of the

P2P network. Two expressions affect the evolution of the

meta-protocol: CONN, which is the amount of neighbors that

is desirable for each peer to have and RANK, which is a

comparison indicator for each possible neighbor. The CONN-

expression uses information like current neighbor amount and

statistical information about the traffic amount of the peer. The

RANK-expression uses mostly information that is related to

the previous queries and their success. Measuring the success

of the evolutionary process is done with the fitness

function:

outtimedsuccessful searchessearchesfitness −+= *5.0 . In

the study it was noticed, that the protocol used by Gnutella is

in many cases optimal and that P2P networks, where

bandwidths are small, form clusters still remaining connected.

It was also noticed, that genetic programming is an effective

search technique for the Gnutella networks and it produces

peers that are adjustable in a varying environment. The

problem of the study was small network with only 30 peers.

In this study, we do not predetermine any values of the

characteristics that are desirable for the P2P network. Instead

we try to find out whether the evolutionary neural networks are

able to form efficient P2P topologies for resource queries

when we determine the characteristics that the neural network

should take into account. These characteristics are given to the

neural network as inputs and can be e.g. bandwidth or

information about the previous resource queries. As a result,

we hope to gain a dynamic P2P network, where the topology

takes shape in interaction with the resource discovery

algorithm.

III. NEUROTOPOLOGY ALGORITHM

NeuroTopology algorithm affects the overlay of the peer-to-

peer network by using a neural network for the topology

construction. NeuroTopology was implemented as a plugin for

the P2PRealm simulator [8].

The idea is that every peer has a neural network to make

decisions about establishing new connections in the P2P

network (Fig. 1). The information that the neural network

needs, is gathered during resource queries. NeuroTopology

algorithm is executed in every peer after a predefined amount

of resource queries. The NeuroTopology is described in

Algorithm 3.1:

Algorithm 3.1.

Input: The node’s u neighbor candidates are

{ }LwwsssN hk ,,...,,...,, 121= , where 2,1 −≤−≤ nhnk , si is

the node’s neighbor, wi is the node’s neighbor’s neighbor and

L are the nodes, from which the node has received resource

replies. T is the number of topology packets i.e., the amount

of traffic topology requests produced. aT is the number of

topology replies i.e., the amount of traffic produced when

establishing a new connection.

Output: Connections to neighbors.

For all Nbi ∈

1. The input parameters for the neural network are set

according to the information about neighbor candidate bi.

 2. Calculate the output for the candidate bi.

 3. If the output is 1 then

3.1 Node u requests candidate bi to be its neighbor.

The number of topology packets is incremented by one:

t = t + 1.

3.2 The input parameters for the neural network are set

according to the information about node u.

 3.3 The output for node u is calculated.

3.4 If the output is 1, the connection between nodes u

and bi is confirmed and the number of topology replies

is incremented by one ta = ta +1.

3.5 If the output is 0, node bi does not accept the

request. The number of topology packets is

incremented by one t = t +1. If bi is a neighbor of node

u, the connection to node u is dropped.

4. If the output is 0 and bi is a neighbor, the connection

to node bi is dropped.

The algorithm goes through all neighbor candidates. A

connection to a candidate is not established one-sided but also

the candidate evaluates with the same neural network whether

it wants to establish a connection to the requesting node.

The input parameters for the neural network are:

• Bias is the bias term and has value 1.

• CurrentNeighborsAmount is the number of the node's

neighbors.

• ToNeighborsAmounts is the number of the node's

candidate neighbor’s neighbors.

• RepliesFromCandidates is the number of resource

replies received from a candidate neighbor.

• RelayedRepliesFromCandidates is the number of

resource replies which a candidate neighbor has

relayed to the node.

• TrafficMeter is a counter, which calculates the amount

of resource reply messages going through a candidate

neighbor.

• TrafficLimit simulates the bandwidth of a candidate

neighbor. If TrafficMeter value is bigger than

Trafficlimit, the candidate neighbor will not reply to

resource requests.

All input parameters should be scaled in [0,1] so that any

parameter will not be dominant, thus slowing down the

optimization. RepliesFromCancidate, TrafficMeter and

RelayedRepliesFromCandidate can have value of zero so

those are scaled with the function

1

1
)(

+
=

x
xf .

ToNeighborsAmount, CurrentNeighborsAmount and

TrafficLimit are scaled with the function

x
xf

1
)(= .

NeuroTopology uses a neural network with two hidden

layers. There are 15 nodes (neurons) and a bias in the first

hidden layer and 3 nodes and a bias in the second. The

activation function in the hidden layers is the hyperbolic

tangent (tanh)

.)(
xx

xx

ee

ee
xt

−

−

+

−
=

The activation function in the output node is the threshold

function

≥

<
=

0,1

0,0
)(

x

x
xs .

The output of the neural network is attained by combining

the functions presented above and output values of the

neurons’ with the formula

∑ ∑ ∑++=
= = =

3

1

15

1

7

1
123)))),((1(1(

k j i
iijk IfwtwtwsO

where
iI is the value of input parameter i and

xyw is the neural

network weights on layer x in position y.

Fig. 1: The neighbors of the peer are determined with the neural network that

receives information about neighbor candidates in its inputs.

IV. NEURAL NETWORK OPTIMIZATION

Before NeuroTopology can be used for managing the

topology, the weights of the neural network have to be

optimized. We used evolutionary computing to optimize the

weights.

The fitness of the used neural network is defined based on

the amount of traffic in the P2P network. Each query j (both

resource and topology queries) is scored for the neural

network h and the fitness is sum of scores Fj.

∑
=

=
n

j

jh Ffitness
1

.

The scores are defined as follows:

−++

≥++−++−

=
otherwise

RrTttp

TttpRrifTttpRr

F

a

aa

j ,
1

1)(),(
 (4.1)

−++

<≥++−−++

≥≥++−++−

=

otherwise
RrTttp

GrandTttpRrifpttRr

GrandTttpRrifTttpRr

F

a

aa

aa

j

,
1

1)(),(

1)(),(2
 (4.2)

Where p is the number of resource queries, r is the number

of resource replies, R is a constant which affects the impact of

the replies and the sent packets on the scoring, t is the number

of packets the topology query used, at is the number of new

connections and T is a constant which affects the impact of

new connections on the scoring. G is the goal for the number

of the resources the resource query should locate.

When measuring the performance of the P2P network in the

generalization environment (see Section V), the formula 4.1 is

used. If there are enough replies for the queries, the neural

network will receive better fitness values by decreasing the

amount of packets:)(aj TttpRrF ++−= . If there are not

enough resources in relation to the sent packets, the neural

network will attain better fitness values by increasing the

amount of packets:
RrTttp

F
a

j
−++

=
1 .

When training the neural network, formula 4.2 is used. If the

network locates the predefined amount of resources, the score

from replies is doubled. Then the neural network can attain

better fitness values by decreasing the number of packets and

topology packets. Especially, the number of new connections

is encouraged to be decreased with)(2 aj TttpRrF ++−= ,

because the current topology already has some desired

properties. If there are enough resource replies when the sent

packets are taken into account (also the topology packets) but

the goal is not achieved, the neural network will attain better

fitness values by increasing the amount of topology packets:

)(pttRrF aj −++= . If there are not enough located resources

in proportion to sent packets, the neural network will attain

better fitness values by increasing the amount of query and

topology packets:
RrTttp

F
a

j
−++

=
1

.

The optimization process had an initial population of 24

neural networks whose weights were randomly defined from

the [-0.2, 0.2] interval. Next, every neural network was tested

in the peer-to-peer simulation environment and the fitness

value was calculated. When all neural networks had been

tested, the 12 best were chosen for mutation and used to breed

the new generation of neural networks. As a result, 24 neural

networks were available to be tested at the next generation.

The mutation was based on the Gaussian random variation

and used the weighted mutation parameter to improve the

adaptability of the evolutionary search. The random variation

function was similar to the one used by Fogel and Chellapilla

in their research [5] and is given as:

 ,,...,1)),1,0(exp()()(' wjii NjNjj == τσσ

 ,,...,1),1,0()()()(' wj

j

iii NjNjjwjw =+= σ

where wN = is the total number of weights and bias terms

in the neural network,

wN2

1
=τ

,)1,0(jN is a standard

Gaussian random variable resampled for every j, σ is the self-

adaptive parameter vector for defining the step size for finding

the new weight and)(' jwi
 is the new weight value. This method

can be seen as a memetic algorithm because when the self-

adaptive parameter iσ is small, the optimization is local.

V. SIMULATION ENVIRONMENT

As a peer-to-peer simulation environment, we used the Peer-

to-Peer Realm (P2PRealm) network simulator [8] which was

originally developed for studying a resource discovery

algorithm based on neural networks [12]. In this research, we

added a neural network guided topology management

algorithm to P2PRealm.

In the test case we used a P2P network that had 100 peers.

Resources were power-law distributed so that peers with small

peer numbers had more resources than others. The amount of

resources was 491 and there were 25 different kinds of

resources. Each peer had a traffic limit which determined the

maximum amount of resource packets during 10 resource

queries. The traffic limits were:

- Nodes 0-24, traffic limit=30

- Nodes 25-49, traffic limit=15

- Nodes 50-74, traffic limit=10

- Nodes 75-99, traffic limit=6

The resource discovery algorithm had a target of finding

50% of the desired resources. The goal of finding half of the

available resource instances was set to demonstrate the

algorithm's ability to balance on a predetermined quality of

service level and not just on locating all resource instances or

one resource instance. We used breadth-first search (BFS),

highest degree search (HDS) and random walker (RW) as

resource discovery algorithms.

The test case is divided into the training environment, where

the neural networks are trained and the generalization

environment, where the performance of the best neural

network is measured in a new but similar environment

indicating the neural network’s ability to generalize. When the

performance starts to decrease in the generalization

environment, the training can be stopped. At that point the

neural network is adapting only to the training set if the

training process is continued. In the training set each

generation is started with a grid topology P2P network and

follows the algorithm:

1. Do rounds 20 times

a. 10 random peers execute resource queries

b. Execute NeuroTopology algorithm in every

peer using information from resource queries

2. Execute 10 resource queries in the P2P network

3. Calculate the fitness for the neural network using

information from step 2

The generalization set is the same as the training set, except

that resource queries were executed by every peer in the P2P

network. In order to keep traffic limits functioning properly,

the traffic meters were reset after every 10 queries. Another

difference is in the use of the fitness function (Section IV). In

the training set the parameter R was 300 and in the

generalization set the value is 50. The parameter R can be

considered as a reward for founding resources and the value

300 produces consistently well-trained neural networks. R was

selected to be large enough to guide the training process

towards neural networks that locate enough resources, but also

small enough to prevent nodes from connecting to all the

neighbors that have wanted resource during some random

query. In the generalization set the value 50 was chosen as a

standard value for comparing the neural networks that were

trained with different kind of attribute values. The value of

parameter T was 5 in both environments. This penalty term

simulates the amount of TCP-packets when establishing new

connections.

The training of the neural networks was done using the HDS

algorithm and the amount of generations was 5000. The results

of the test case are represented in Fig. 2-6. In the training set

there is no significant improvement in the fitness value after

generation 400 but some optimization still took place because

in the generalization set the fitness is not converging until

generation 3500. In the generalization set the HDS algorithm

finds desired resources (845 of them) most of the time after

generation 400, but the amount of packets is decreasing until

generation 3500. Also the topology packets, the topology

changes and the amount of failed queries remain relatively

stable after generation 3500. “Failed queries” represents the

amount of nodes that do not reach their target of 50% found

resources. Thus, it was possible to train the neural networks in

a computationally easier environment and to use the trained

networks in a more demanding environment.

Fig. 2: Fitness in the training environment.

Fig. 3: Fitness in the generalization environment.

Fig. 4: Resource packets and replies in the generalization environment.

Fig. 5: Topology queries and replies in the generalization environment.

Fig. 6: Number of nodes that did not find 50% of all the resources in the

generalization environment.

VI. SIMULATION RESULTS

To evaluate the efficiency of the topology that is produced

with the trained NeuroTopology algorithm, in addition to the

grid topology, we generated a power-law topology and a

random graph topology for comparison. The power-law

topology was generated using the Barabási-Albert model and

the random graph topology using the Erdös model [1].

Parameters for the traffic limits, resource distribution and

fitness function are the same as in the generalization set of the

training neural network. The results of the networks where

peers are searching resources with highest degree search

(HDS), random walker (RW) and breadth first search with

TTL value 3 (BFS) in the above mentioned topologies, are

documented in Table 1. By calculating the ratio between the

located resources and the used query packets, we can

determine the efficiency of the algorithms. Walker algorithms

(HDS and RW) perform best in the power-law topology

finding nearly all resources with an efficiency of 0.23 and 0.18

respectively. The best topology for the BFS algorithm is the

random graph, where 470 of 845 desired resources were found

with an efficiency of 0.14. Only 13 peers reached the target of

finding 50% of all the resources.

Next, we analyze the effect of NeuroTopology with nine

different scenarios: three different starting topologies using

three different resource algorithms. Every peer executes

resource queries and then executes the NeuroTopology

algorithm that was trained using the HDS algorithm. This

procedure is done 20 times and the results are in Table 2. In

the efficiency columns the first one is counted with topology

packets and the second one without them. When comparing the

fitness values (rewarding every resource with 50 points)

between Tables 1 and 2, we can see significant improvement

in most of the cases. The power-law topology is the hardest

one to improve. For example the HDS algorithm finds roughly

the same amount of resources in the power-law P2P network

and in the NeuroTopology generated P2P network but uses

470 less packets in the latter one. Nevertheless, when

considering the traffic used by the topology management, the

fitness value remains roughly the same. A general observation

from the results is that the NeuroTopology trained using the

HDS algorithm is able to improve the efficiency of the walker

algorithms regardless of the starting topology. The training

was done using the HDS algorithm, which prefers nodes with

high neighbor amount. The BFS algorithm prefers P2P

networks where the neighbor distribution is more uniform. Due

to the different nature of these algorithms, the neural network

has not learnt to generate a topology, which improves the

efficiency of both BFS and HDS at the same time.

Values in Table 2 are average values of 20 rounds so they

do not give us information about the convergence of the P2P

network. A good topology algorithm would change the

inefficient grid topology on the early rounds and limit the

changes when the efficient topology has been reached. An

example is in Fig 7 and Fig. 8. NeuroTopology started from

the grid topology where the HDS algorithm was used. The P2P

network has converged after 4 rounds of resource queries and

topology changes. The topology after 20 rounds is presented in

Fig 9.

VII. CONCLUSION

NeuroTopology has proved to be an adaptable algorithm for

the P2P network topology management. P2P topologies

generated by NeuroTopology are significantly more efficient

than grid, random or power-law topologies. Nevertheless,

managing topology produces traffic. One has to case-

specifically consider, how worthy it is to find resources with

less query packets. For example, using the random walker in

the power-law topology without NeuroTopology uses 12%

more resource packets to find roughly the same amount of

resources compared to using NeuroTopology. Adding the

topology management traffic to the equation, the efficiency is

roughly the same. Nevertheless, the results are encouraging

and further research includes testing the algorithm in larger

P2P networks.

TABLE I

EFFICIENCIES OF RESOURCE ALGORITHMS IN STATIC P2P TOPOLOGIES

Algorithm Topology Fitness Packets Resources Failed
Queries

Hops Efficiency

HDS Grid 30059 4791 697 24 47.93 0.145

RW Grid 30449 4501 699 24 45.08 0.155

BFS Grid 10302 2598 258 99 2.92 0.099

HDS Power 38216 3634 837 6 36.34 0.230

RW Power 36193 4507 814 7 45.07 0.180

BFS Power 18293 4707 460 71 2.86 0.097

HDS Random 28209 3891 642 45 38.97 0.164

RW Random 26047 3603 593 50 36.07 0.164

BFS Random 19340 3350 470 87 2.96 0.140

TABLE 2

EFFICIENCIES OF RESOURCE ALGORITHMS WHEN USING NEUROTOPOLOGY

Algori
thm

Topolog
y

Fitness Improvement
in Fitness

Packets Resources Failed
Queries

Topology
Packets

Topology
Changes

Hops Efficiency Efficiency
(only

resource
packets)

HDS Grid 37502 24.76 % 3549 836 1 414 67 35.50 0.207 0.236

RW Grid 34522 13.38 % 4272 795 10 486 94 42.72 0.164 0.186

BFS Grid 22497 118.38 % 5833 589 57 510 122 2.93 0.091 0.101

HDS Power 38130 -0.23 % 3164 838 1 366 48 31.64 0.234 0.265

RW Power 37216 2.83 % 4010 837 1 384 48 40.10 0.188 0.209

BFS Power 20768 13.53 % 5923 553 62 464 99 2.90 0.085 0.093

HDS Random 37505 32.95 % 3409 834 2 456 66 34.10 0.212 0.245

RW Random 35496 36.28 % 4382 815 6 497 75 43.83 0.165 0.186

BFS Random 23382 20.90 % 5728 605 56 545 119 2.94 0.095 0.106

Fig. 7: NeuroTopology manages to make the grid P2P network more

effective for the HDS algorithm during the first four rounds of resource

querying and topology changing.

Fig. 8: The amount of topology changes convergences during the first four

rounds.

Fig. 9: End result P2P topology after 20 rounds when started from the grid

topology.

Fig. 10: Neighborhood distribution of the topology in Fig. 9.

REFERENCES

[1] E.M. Airoldi and K.M. Carley. Sampling Algorithms for Pure

Network Topologies: a Study on the Stability and the Separability of

Metric Embeddings. SIGKDD Explor. Newsl., 7(2):13–22, 2005.

[2] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, J. Vuori. New

Topology Management Algorithms for Unstuctured P2P Networks.

Second International Conference on Internet and Web Applications

and Services, May 2007.

[3] T. Condie, S. Kamvar and H. Garcia-Molina. Adaptive Peer-to-Peer

Topologies. In Proceedings of the Fourth IEEE International

Conference on Peer-To-Peer Computing, 2004.

[4] B.F. Cooper and H. Garcia-Molina. Ad hoc, Self-Supervising Peer-to-

Peer Search Networks. Technical report, 2003.

[5] K. Chellapilla and D. Fogel. Evolving neural networks to play

checkers without relying on expert knowledge. IEEE Trans. on Neural

Networks, 10 (6), pp. 1382-1391, 1999.

[6] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P

Systems. Technical report, 2002.

[7] M. Iles and D. Deugo. Adaptive Resource Location in a Peer-to-Peer

Network. In The 16th International Conference on Industrial &

Engineering Applications of Artificial Intelligence and Expert

Systems, July 2003.

[8] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen and J. Vuori.

P2Prealm – Peer-to-Peer Network Simulator. In Proceedings of the

11th IEEE International Workshop on Computer-Aided Modeling,

Analysis and Design of Communication Links and Networks, 2006.

[9] M.K. Ramanathan, V. Kalogeraki and J. Pruyne. Finding Good Peers

in Peer-to-Peer Networks. In Proceedings of IEEE International

Parallel and Distributed Computing Symposium, April 2002.

[10] G. Sakaryan and H. Unger. Influence of the Decentralized Algorithms

on Topology Evolution in P2P Distributed Networks. In Proceedings

of Design, Analysis, and Simulation of Distributed Systems (DASD

2003), 2003.

[11] K. Sripanidkulchai, B. Maggs and H. Zhang. Efficient Content

Location Using Interest-based Locality in Peer-to-Peer Systems. In

Proceedings of Infocom, 2003.

[12] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J. Vuori.

Resource Discovery in P2P Networks Using Evolutionary Neural

Networks. In International Conference on Advances in Intelligent

Systems - Theory and Applications (AISTA 2004), November 2004.

