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Abstract. This paper proposes a neural network based approach for
solving the resource discovery problem in Peer to Peer (P2P) networks
and an Adaptive Global Local Memetic Algorithm (AGLMA) for per-
forming the training of the neural network. This training is very chal-
lenging due to the large number of weights and noise caused by the
dynamic neural network testing. The AGLMA is a memetic algorithm
consisting of an evolutionary framework which adaptively employs two
local searchers having different exploration logic and pivot rules. Fur-
thermore, the AGLMA makes an adaptive noise compensation by means
of explicit averaging on the fitness values and a dynamic population siz-
ing which aims to follow the necessity of the optimization process. The
numerical results demonstrate that the proposed computational intelli-
gence approach leads to an efficient resource discovery strategy and that
the AGLMA outperforms two classical resource discovery strategies as
well as a popular neural network training algorithm.

1 Introduction

During recent years the use of peer-to-peer networks (P2P) has significantly
increased and thus demand of high performance peer-to-peer networks is con-
stantly growing. In order to obtain proper functioning of a P2P network a cru-
cial point is to efficiently execute the P2P resource discovery, since an improper
resource discovery strategy would lead to overwhelming query traffic and conse-
quently to a waste of bandwidth for each single user.

This problem has been intensively analyzed and several solutions have been
proposed in commercial packages and scientific literature. The solutions so far
proposed can be classified into two categories: breadth-first search (BFS) and
depth-first search (DFS). BFS strategies forward a query to multiple neighbors
at the same time whereas DFS strategies forward only to one neighbor.

BFS strategies have been used in Gnutella, where the query is forwarded to
all neighbors and the forwarding is controlled by a time-to-live parameter. This
parameter is defined as the amount of hops required to forward the query. Two
nodes are said to be n hops apart if the shortest path between them has length
n [1]. The main disadvantage of the Gnutella’s mechanism is that it generates
a massive traffic of query messages when the time-to-live parameter is high.
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In order to reduce query traffic, Lv et al. [2] proposed the Expanding Ring.
This strategy establishes that the time-to-live parameter is gradually increased
until enough resources have been found. Although use of the Expanding Ring

is beneficial in terms of query packet reduction, it introduces some delay to
resource discovery and thus implies a longer waiting time for the user. Kalogeraki
et al. [3] and Menascé [4] proposed that only a subset of neighbors are selected
randomly for forwarding. While in [3] a mechanism is proposed which stores
the performance of the queries previously done for each neighbor and then uses
this memory to direct subsequent queries, in [4] the earlier replies are cached
in directory entries and queried prior to using broadcast probability. Yang and
Garcia-Molina [1] proposed to heuristically select the first neighbor and further
uses BFS for forwarding the query. In Gnutella2 a trial query is sent to the
neighbors and estimates how widely the actual query should be forwarded.

In the DFS strategies, selection of the neighbor for query forwarding is per-
formed by means of heuristics. Lv et al. [2] studied the use of multiple random
walkers which periodically check the query originator in order to verify whether
the query should be forwarded further. Tsoumakos and Roussopoulos [5] pro-
posed using the feedback from previous queries in order to tune probabilities for
further forwarding of random walkers. Crespo and Garcia-Molina [6] proposed
routing indices, which provide shortcuts for random walkers in locating resources.
Sarshar et al. [7] proposed replicating a copy of resources and thus ensure that
resource discovery strategy locates at least one replica of the resource.

The main limitation of the previous studies, for both BFS and DFS strate-
gies, is that all the approaches are restricted to only one search strategy. On the
contrary, for the same P2P network, in some conditions it is preferable to em-
ploy both BFS and DFS strategies. In order to obtain a flexible search strategy,
which intelligently takes into account the working conditions of the P2P network,
Vapa et al. [8] proposed a neural network based approach (NeuroSearch) which
adaptively combines BFS and DFS. In NeuroSearch, a trained neural network is
able to map a specific input set to forward decisions in an if-then logic. Thanks
to this logic, the resource discovery strategy can be applied also in devices with
limited computing power. On the other hand, training neural networks to adapt
to various conditions is challenging since it requires training in multiple topo-
logical scenarios thus leading to complicated computational requirements. It is
therefore fundamental to investigate efficient training algorithms which lead to
high performance in a short training time.

2 Problem Description

NeuroSearch [8] is a neural network-based approach which combines different
local information units together as an input to multi-layer perceptron (MLP)
neural network [9]. The neural network employed in NeuroSearch contains two
hidden layers, both having 10 neurons and two different transfer functions in
hidden and output layers. The structure of this neural network (see Fig. 1)
has been selected on the basis of previous studies carried out by means of the



3

P2PRealm simulation framework [10]. Details regarding the functioning of this
neural network are given in [8] and [10]. We characterize the query forwarding
situation with a model consisting of 1) the previous forwarding node, 2) the
currently forwarding node and 3) the receiver of the currently forwarding node.
Upon receiving a query, the currently forwarding node selects the first of its
neighbors and determines the inputs, related to that neighbor, of the neural
network. The neural network output is then calculated. This output establishes
whether or not the query will be forwarded to the neighbor. Next, all other
neighbors including the previous forwarding node, are processed in a similar
manner by means of the same neural network. Fig. 2, shows an example of the
functioning of a P2P network with neural network based forwarding. The circles
shown in the figure represent peers of the P2P network. The arcs between the
peers represent the Transmission Control Protocol communication links between
the peers. The rectangles represent a neural network evaluation for different
neighbors. This paper addresses the problem in the training of a neural network

Fig. 1: MLP Neural Network Fig. 2: Query Forwarding.

(i.e. the determination of the set of weight coefficients W ) of the kind in Fig. 1
with the aim summarized in Fig 2. As shown in Fig. 1, the weights can be divided
into three categories on the basis of the layer to which they belong to. There are
22 input neurons and 10 neurons on both the hidden layers. Since one input is
constant (Bias, see [8]) the total amount of weights is 22 ∗ 9 + 10 ∗ 9 + 10 = 298.
The weights can take values within the range (−∞,∞). In order to estimate the
quality of a candidate solution, the performance of the P2P network is analyzed
with the aid of a simulator whose working principles are described in [10] and a
certain number n of queries are performed. For each query, the simulator returns
two outputs: the number of query packets P used in the query and the number
of found resource instances R during the query. At each jth query, these outputs
are combined in the following way and Fj is determined:

Fj =















0 if P > 300
1 − 1

P+1 if P ≤ 300 AND R = 0

50 ∗ R − P if P ≤ 300 AND 0 < R < AR
2

50 ∗ AR
2 − P if P ≤ 300 AND AR

2 < R

(1)
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In (1), the amount of Available Resources (AR) instances is constant at each
query and the constant values 300 and 50 have been set according to the criterion
explained in [8]. It must be noted that due to its formulation each Fj could
likely contain several plateaus (see (1)). The total fitness over the n queries

is given by F =
n
∑

j=1

Fj(W ). It is important to remark that multiple queries

(n = 10) are needed in order to ensure that the neural network is robust in
different query conditions. The querying peer and the queried resource need
to be changed to ensure that the neural network is not only specialized for
searching resources from one part of the network or one particular resource
alone. Therefore, two consecutive fitness evaluations do not produce the same
fitness value for the same neural network. Since n queries are required and, for
each query, the first forwarding node is chosen at random, fitness F is noisy.
This noise is not Gaussian. Let us indicate with PN (n) the distribution of this
noise and thus formulate the optimization problem addressed in this paper:

max (F (W ) + Z) in (−∞,∞)
298

;Z ∼ PN (n) (2)

3 The Adaptive Global-Local Memetic Algorithm

In order to solve the problem in (2), the following Adaptive Global-Local Memetic
Algorithm (AGLMA) has been implemented.
Initialization. An initial sampling made up of Si

pop individual has been exe-
cuted pseudo-randomly with a uniform distribution function over the interval
[−0.2, 0.2]. This choice can be briefly justified in the following way. The weights
of the initial set of neural networks must be small and comparable among each
other in order to avoid one or a few weights dominating with respect to the
others as suggested in [11], [12].
Parent Selection and Variation Operators. All individuals of the pop-
ulation Spop undergo recombination and each parent generates an offspring.
The variation occurs as follows. Associated with each candidate solution i is
a self-adaptive vector hi which represents a scale factor for the exploration.
More specifically, at the first generation the self-adaptive vectors hi are pseudo-
randomly generated with uniform distribution within [−0.2, 0.2] (see [11], [12]).

At subsequent generations each self-adaptive vector is updated according to
[11], [12]:

hk+1
i (j) = hk

i (j) e(τNj(0,1)) for j = 1, 2...n (3)

where k is the index of generation, j is the index of variable (n = 298), Nj (0, 1)
is a Gaussian random variable and τ = 1√

2
√

n
= 0.1659. Each corresponding

candidate solution Wi is then perturbed as follows [11], [12]:

W k+1
i (j) = W k

i + hk+1
i (j)Nj (0, 1) for j = 1, 2...n (4)

Fitness Function. In order to take into account the noise, function F is calcu-
lated ns times and an Explicit Averaging technique is applied [13]. More specif-
ically, each set of weights for a neural network (candidate solution) is evaluated
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by means of the following formula:

F̂ = F i
mean −

σi

√
ns

(5)

where F i
mean and σi are respectively the mean value and standard deviation

related to the ns samples performed to the ith candidate solution.

The penalty term σi

√
ns

takes into account distribution of the data and the

number of performed samples [14]. Since the noise strictly depends on the so-
lution under consideration, it follows that for some solutions the value of σi

is relatively small (stable solutions) and so penalization is small. On the other
hand, other solutions could be unstable and score 0 during some samples and
give a high performance value during other samples. In these cases σi is quite
large and the penalization must be significant.
Local Searchers. Two local searchers with different features in terms of search
logic and pivot rule have been employed. These local searchers have the role of
supporting the evolutionary framework, offering new search directions and ex-
ploiting the available genotypes [15].
1)Simulated Annealing The Simulated Annealing (SA) metaheuristic [16]
has been chosen since it offers an exploratory perspective in the decision space
which can choose a search direction leading to a basin of attraction different from
starting point W0 and, thus, prevents an undesired premature convergence. The
exploration is performed by using the same mutation scheme as was described
in equations (3) and (4) for an initial self-adaptive vector h0 pseudo-randomly
sampled in [−0.2, 0.2].

The main reason for employing the SA in the AGLMA is that the evolution-
ary framework should be assisted in finding better solutions which improve the
available genotype while at the same time exploring areas of the decision space
not yet explored. It accepts, with a certain probability, solutions with worse per-
formance in order to obtain a global enhancement in a more promising basin of
attraction. In addition, the exploratory logic aims to overcome discontinuities of
the fitness landscape and to “jump” into a plateau having better performance.
For these reasons the SA has been employed as a “global” local searcher.
2)Hooke-Jeeves Algorithm The Hooke-Jeeves Algorithm (HJA) [17] is a de-
terministic local searcher which has a steepest descent pivot rule. The HJA is
supposed to efficiently exploit promising solutions enhancing their genotype in
a meta-Lamarckian logic and thus assist the evolutionary framework in quickly
climbing the basin of attractions. In this sense the HJA can be considered as a
kind of “local” local searcher integrated in the AGLMA.
Adaptation. In order to design a robust algorithm [15], at the end of each
generation the following parameter is calculated:

ψ = 1 −

∣

∣

∣

∣

∣

F̂avg − F̂best

F̂worst − F̂best

∣

∣

∣

∣

∣

(6)

where F̂worst, F̂best, and F̂avg are the worst, best, and average of the fitness
function values in the population, respectively. As highlighted in [18], ψ is a



6

fitness-based measurement of the population diversity which is well-suited for
flat fitness landscapes. The employment of this parameter, taking into account
the presence of plateaus in the fitness landscape (i.e. areas with a very low vari-
ability in the fitness values.) ψ, efficiently measures the population diversity even
when the range of variability of all fitness values is very small. The population
has high diversity when ψ ≈ 1 and low diversity when ψ ≈ 0. A low diversity
means that the population is converging (possibly in a suboptimal plateau). We
remark that the absolute diversity measure used in [14], [19], [20] and [21] is
inadequate in this case, since, according to this, the population diversity would
be very low most of the time.
Coordination of the local searchers. The SA is activated by the condition
ψ ∈ [0.1, 0.5]. This adaptive rule is based on the observation that for values of
ψ > 0.5, the population diversity is high and therefore the evolutionary frame-
work needs to have a high exploitation of the available genotypes (see [19], [18]
and [21]). On the other hand, if ψ < 0.5 the population diversity is decreasing
and application of the SA can introduce a new genotype in the population which
can prevent a premature convergence. In this sense, the SA has been employed
as a local searcher with “global” exploratory features. The condition regarding
the lower bound of usability of the SA (ψ > 0.1) is due to the consideration that
if ψ < 0.1 application of the SA is usually unsatisfactory since it most likely
leads to a worsening in performance.

Moreover, the SA, in our implementation, is applied to the second best in-
dividual. This gives a chance at enhancing a solution with good performance
without possibly ruining the genotype of the best solution. The initial temper-

ature Temp0 has been adaptively set Temp0 =
∣

∣

∣
F̂avg − F̂best

∣

∣

∣
. This means that

the probability of accepting a worse solution depends on the state of the conver-
gence. In other words, the algorithm does not accept worse solutions when the
convergence has practically occurred.

The HJA is activated when ψ < 0.2 and is applied to the solution with best
performance. The basic idea behind this adaptive rule is that the HJA has the
role of quickly improving the best solution while staying in the same basin of
attraction. In fact, although evolutionary algorithms are efficient in detecting
a solution which is near the optimum, they are not so efficient in “ending the
game” of optimization. In this light, the action of the HJA can be seen as purely
“local”. The condition ψ < 0.2 means that the HJA is employed when there are
some chances that optimal convergence is approaching. An early application of
this local searcher can be inefficient since a high exploitation of solutions having
poor fitness values would not lead to significant improvements of the population.

It should be noted that in the range ψ ∈ [0.1, 0.2] both local searchers are
applied to the best two individuals of the population. This range is very criti-
cal for the algorithm because the population is tending towards a convergence
but still has not reached such a condition. In this case, there is a high risk of
premature convergence due to the presence of plateaus and suboptimal basins
of attraction or false minima introduced by noise. Thus, the two local searchers
are supposed to “compete and cooperate” within the same generation, merging
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the “global” search power of the SA and the “local” search power of the HJA.
An additional rule has been implemented. When the SA has succeeded in en-
hancing the starting solution, the algorithm attempts to further enhance it by
the application of the HJA under supervision of the evolutionary framework.
Dynamic population size in survivor selection. The population is resized
at each generation and the Spop individuals having the best performance are
selected for the subsequent generation:

Spop = Sf
pop + Sv

pop · (1 − ψ) , (7)

where Sf
pop and Sv

pop are the fixed minimum and maximum sizes of the variable
population Spop, respectively.

The dynamic population size has two combined roles. The first is to massively
explore the decision space and thus prevent a possible premature convergence
(see [19]), the second is to Implicitly Average in order to compensate for noise
by means of the evaluations of similar individuals [13]. According to the first
role, when ψ ≈ 0 the population is converging and a larger population size
is required to increase the exploration and possibly inhibit premature conver-
gence by offering new search directions. On the other hand, if the population is
spread out in the decision space it is highly desirable that the most promising
solution leads the search and that the algorithm exploits this promising search
direction. According to the second role, it is well-known that large population
sizes are helpful in defeating the noise [22]. Furthermore, recent studies [14], [23]
have noted that the noise jeopardizes functioning of the selection mechanisms
especially for populations made up of individuals having similar performance,
since the noise introduces a disturbance in pair-wise comparison. Therefore, the
AGLMA aims to employ a large population size in critical conditions (low di-
versity) and a small population size when a massive averaging is unnecessary.
The algorithm stops when either a budget condition on the number of fitness
evaluations is satisfied or ψ takes a value smaller than 0.01.

4 Numerical Results

For the AGLMA 30 simulation experiments have been executed. Each experi-
ment has been stopped after 1.5 × 106 fitness evaluations. At the end of each
generation, the best fitness value has been saved. These values have been av-
eraged over the 30 experiments available. The average over the 30 experiments
defines the Average Best Fitness (ABF). Analogously, 30 experiments have been
carried out with the Checkers Algorithm (CA) described in [11], [12] according
to the implementation in [8], and the proposed here Adaptive Checkers Algo-
rithm (ACA) which is the CA with the fitness as shown in (5) and the adaptive
population size as shown in (7). For the same P2P network, the BFS according
to the implementation in Gnutella and the random walker DFS proposed in [2]
have been applied. Table 1 shows the parameter settings for the three algorithms
and the optimization results. The final fitness F̂ b obtained by the most success-
ful experiment (over the 30 sample runs), the related number of query packets
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P used in the query and the number of found resource instances R during the
query are given. In addition the average best fitness at the end of the experiments
< F̂ >, the final fitness of the least successful experiment F̂w and the related
standard deviation are shown. Since the BFS follows a deterministic logic, thus
only one fitness value is shown. On the contrary, the DFS under study employs
a stochastic structure and thus the same statistic analysis as that of CA, ACA
and AGLMA over 30 experiments has been carried out.

Table 1: Parameter setting and numerical results

PARAMETER AGLMA CA ACA BFS DFS

EVOLUTIONARY FRAMEWORK

Si
pop 30 30 30 – –

Spop ∈ [20, 40] 30 ∈ [20, 40] – –

sample size ns 10 – 10 – –

SIMULATED ANNEALING

initial temperature Temp0 adaptive – – – –

temperature decrease hyperbolic – – – –

maximum budget per run 600 – – – –

HOOKE-JEEVES ALGORITHM

exploratory radius ∈ [0.5, 0.01] – – – –

maximum budget per run 1000 – – – –

NUMERICAL RESULTS

P 350 372 355 819 514

R 81 81 81 81 81

F̂ b 3700 3678 3695 3231 3536

< F̂ > 3654 3582 3647 – 3363

F̂ w 3506 3502 3504 – 3056

std 36.98 37.71 36.47 – 107.9

Numerical results in Table 1 show that the AGLMA and ACA outperform the
CA and that the AGLMA slightly outperformed the ACA in terms of the final
solution found. Moreover, the AGLMA clearly outperforms the BFS employed
in Gnutella and the DFS.

Figures 3 and 4 show the comparison of the performance. As shown, the
AGLMA has a slower convergence than the CA and the ACA but reaches a
final solution having better performance. It is also clear that the ACA has inter-
mediate performance between the CA and AGLMA. The ACA trend, in early
generations, has a rise quicker than the AGLMA but slower than the CA. On
the other hand, in late generations, the ACA outperforms the CA but not the
AGLMA. Regarding effectiveness of the noise filtering components, Fig. 4 shows
that the ACA and the AGLMA are much more robust with respect to noise than
the CA. In fact, the trend of the CA performance contains a high amplitude and
frequency ripple, while the ACA and AGLMA performance are roughly mono-
tonic. Regarding effectiveness of the local searchers, the comparison between the
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ACA and the AGLMA shows that the AGLMA slightly outperforms the ACA
tending to converge to a solution having a better performance.

5 Conclusion

This paper proposes an AGLMA for performing the training of a neural net-
work, which is employed as computational intelligence logic in P2P resource
discovery. The AGLMA employs averaging strategies for adaptively executing
noise filtering and local searchers in order to handle the multivariate fitness
landscape. These local searchers execute the global and local search of the de-
cision space from different perspectives. The numerical results show that the
application of the AGLMA leads to a satisfactory neural network training and
thus to an efficient P2P network functioning. The proposed neural network along
with the learning strategy carried by the AGLMA allows the efficient location
of resources with little query traffic. Thus, with reference to classical resource
discovery strategies (Gnutella BFS and DFS), the user of the P2P network ob-
tains plentiful amounts of information about resources consuming a definitely
smaller portion of bandwidth for query traffic. Regarding performance during
the optimization process, comparison with a popular metaheuristic present in
literature shows the superiority of the AGLMA in terms of final solution found
and reliability in a noisy environment.

References

1. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: Proc.
of the 22nd Intern. Conf. on Distributed Computing Systems. (2002) 5–14

2. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in un-
structured peer-to-peer networks. In: Proc. of the 16th ACM Intern. Conf. on
Supercomputing. (2002) 84–95

3. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism
for peer-to-peer networks. In: Proc. 11th ACM Intern. Conf. on Information and
Knowledge Management. (2002) 300–307
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