
Timo Juonoja

The Analysis of BlueCheese Mobile Peer-to-Peer
Middleware

Master’s Thesis
in Information Technology
July 28, 2006

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Author: Timo Juonoja
Contact information: timo.juonoja@cc.jyu.fi
Title: The Analysis of BlueCheese Mobile Peer-to-Peer Middleware
Työn nimi: Mobiilin vertaisverkon BlueCheese väliohjelmiston analysointi
Project: Master’s Thesis in Information Technology
Page count: 66
Abstract: BlueCheese is a mobile peer-to-peer middleware that was produced in
the MoPeDi student software project at the University of Jyväskylä. BlueCheese
operates in Symbian OS mobile phones as a transmission system for mobile peer-
to-peer applications. The transmission technology is Bluetooth. This master’s thesis
describes first the related technologies and functionality of BlueCheese. Emphasis
in the thesis was to analyze BlueCheese and to develop a working prototype.
Suomenkielinen tiivistelmä: BlueCheese on Jyväskylän yliopiston MoPeDi-sovel-
lusprojektissa tuotettu väliohjelmisto. BlueCheese toimii Symbian OS -matkapuhe-
limissa tiedonsiirtovälineenä mobiileille vertaisverkkosovelluksille. Tiedonsiirto mat-
kapuhelinten kesken on toteutettu Bluetoothilla. Tämä Pro Gradu -työ kuvaa en-
sin BlueCheeseen liittyvät teknologiat sekä BlueCheesen toiminnan. Pääpaino Pro
Gradu -työllä oli analysoida BlueCheesen toiminta sekä kehittää siitä toimiva pro-
totyyppi.
Keywords: Bluetooth, BlueCheese, middleware, mobile peer-to-peer, Symbian OS,
middleware analysis
Avainsanat: Bluetooth, BlueCheese, väliohjelmisto, mobiilit vertaisverkot, Symbian
OS, väliohjelmiston analysointi

Glossary

ACK Acknowledge packet
ACL Asynchronous Connection-Less
API Application Program Interface
BPSK Binary Phase Shift Keying
CCK Complementary Code Keying
CRC Cyclic Redundancy Checksum
CSMA-CA Carrier Sense Multiple Access with Collision Avoidance
DS Direct Sequence
DSFH Direct Sequence Frequency Hopping
DSSS Direct Sequence Spread Spectrum
EDR Enhanced Data Rate
FCC Federal Communications Commission
FFD Full Function Device
GFSK Gaussian Frequency Shift Keying
GSM Global System for Mobile Communications
GPCS Gasoline Price Comparison System
GPRS General Packet Radio System
GTS Guaranteed Time Slot
HDR High Data Rate
HDTV High-Definition television
IrDA Infrared Data Association
IEEE Institute of Electrical and Electronics Engineers
ISM Industrial Scientific Medical band
L2CAP Logical Link Control and Adaptation Protocol
LAN Local Area Network
LDR Low Data Rate
Li-ion Lithium ion
LMP Link Manager Protocol
MAC Medium Access Control
MBOA MultiBand OFDM Alliance
MP2P Mobile Peer-to-Peer
OFDM Orthogonal Frequency Division Multiplexing

i

OQPSK Offset Quadrature Phase Shift Keying
OS Operating System
OSI Open Systems Interconnection
PAN Personal Area Network
P2P Peer-to-Peer
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RFCOMM Radio Frequency Communications Protocol
RFD Reduced Function Device
RFID Radio Frequency Identification
SCO Synchronous Connection-Oriented
SDK Software Development Kit
SDP Service Discovery Protocol
SIG Special Interest Group
TDD Time-Division Duplex
UMTS Universal Mobile Telephone System
USB Universal Serial Bus
UWB Ultra WideBand
Wi-Fi Wireless Fidelity
WAN Wide-Area Network
WBAN Wireless Body Area Network
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
WUSB Wireless Universal Serial Bus

ii

Contents

Glossary i

1 Introduction 1
1.1 Research Problem . 1
1.2 Related Work . 2
1.3 Structure of the Thesis . 3

2 Architectures and Technologies 4
2.1 Distributed Systems . 4
2.2 Peer-to-Peer . 5
2.3 Mobile Peer-to-Peer . 6
2.4 Middleware . 7
2.5 Bluetooth . 8
2.6 Symbian OS . 12

3 BlueCheese 14
3.1 Protocols and Features . 14
3.2 Functionality . 16
3.3 Modifications and Improvements . 20
3.4 Comparison of BlueCheese and Nokia Proximity Toolkit 22
3.5 Gasoline Price Comparison System . 23

4 Measurements and Analysis 25
4.1 Battery Power . 25

4.1.1 Standby Time . 26
4.1.2 Continuous Device Discovery 27
4.1.3 Continuous Data Transfer . 27
4.1.4 Summary . 28

4.2 Data Transfer . 29
4.2.1 Device Discovery Rate . 29
4.2.2 Connection Establishment Rate 32
4.2.3 Data Transfer Rate . 34

4.3 Fault-tolerance . 36

iii

4.3.1 General Errors . 36
4.3.2 Data Transfer . 36

4.4 Location Service . 37

5 Future Development and Aspects 38
5.1 Combining Peer-to-Peer and Client-Server Architectures 38
5.2 Additional Database Web Server . 38
5.3 New Bluetooth Specifications . 39
5.4 Other Wireless Standards . 40

5.4.1 ZigBee . 40
5.4.2 Wireless Local Area Networks (WLANs) 43
5.4.3 Ultra Wideband (UWB) . 45
5.4.4 Comparison and Summary of Wireless Standards 48

6 Conclusion 51

Appendices

A BlueCheese Application Programming Interface 53

References 57

iv

1 Introduction

This master’s thesis was done as a part of the Cheese Factory research project.
Cheese Factory is a peer-to-peer research project located at the University of Jyväsky-
lä. The emphasis of the Cheese Factory project is to study peer-to-peer communica-
tion and the behavior of peer-to-peer networks concentrating on distributed search
of resources and their efficient use [7].

BlueCheese was produced in the MoPeDi student software project at the Univer-
sity of Jyväskylä. BlueCheese is a mobile peer-to-peer middleware that operates in
Symbian OS mobile phones as a transmission system for mobile peer-to-peer appli-
cations. The transmission technology is Bluetooth, which is now supported by many
Symbian OS mobile phones. Another possible choice could have been Wireless Lo-
cal Area Network (WLAN), but it was not supported in many smartphones at the
time of implementation. However WLAN is becoming more widespread little by
little, so in the future it might be a possible transmission technology for BlueCheese.

1.1 Research Problem

All applications contain errors even in the final version of the product. One of the
thesis’ purpose was to develop a working prototype of BlueCheese mobile peer-to-
peer middleware. The stability of the application is an especially challenging task in
Symbian OS applications. Mobile phones have little memory compared to personal
computers, so the applications must have a strict memory handling. If the memory
handling is poorly done, the system crashes.

Another main point was to analyze the functionality of BlueCheese. One of the
most significant keys was to consider the suitability of Bluetooth transmission tech-
nology for mobile peer-to-peer communications. BlueCheese was tested with vari-
ous methods by computing the power consumption, connections, data transfer and
fault-tolerance.

1

1.2 Related Work

One of the most used mobile peer-to-peer middleware might be Nokia Proximity
Toolkit. The middleware itself may be unknown but the applications, which exploit
the services of Nokia Proximity Toolkit, are familiar to some people. For example
Nokia Sensor [22], the application for providing portable personality and commu-
nication with file sharing in short range area, uses Nokia Proximity Toolkit as trans-
mission system.

Nokia Proximity Toolkit provides nearly the same services as BlueCheese with
some dissimilarities (see table 1.1). BlueCheese works mostly independently whereas
the Proximity Toolkit is handled mainly by the application or the user of the de-
vice. BlueCheese is designed for spreading the information automatically whereas
the Proximity Toolkit is used mainly according to the user’s wish to communicate.
Therefore the connection establishment procedures in BlueCheese differ totally from
the Proximity Toolkit. BlueCheese informs the application for available connections
whereas the connections in Proximity Toolkit are mainly created by the user.

BlueCheese Nokia Proximity Toolkit
Application sessions YES YES
Data transmissions YES YES
Automatic device search and YES YES

connection establishment
Manual device search and NO YES

connection establishment
Location service YES NO

Table 1.1: Features of BlueCheese and Nokia Proximity Toolkit.

BlueCheese and Nokia Proximity Toolkit are mobile peer-to-peer middlewares
with the same purpose: to provide a simple way to communicate with other Blue-
tooth devices. Several applications can use simultaneously both systems and the
data is supplied between similar applications of the two devices. BlueCheese pro-
vides location service for estimating physical locations of the mobile device as an
extra feature. Section 3.4 treats the comparison of BlueCheese and Nokia Proximity
Toolkit more precisely. [25]

2

1.3 Structure of the Thesis

The structure of the master’s thesis is as follows. Chapter 2 describes the main
involved architectures and technologies of BlueCheese. The functionality and the
features of BlueCheese are represented in chapter 3. Chapter 4 contains the mea-
surements and analysis of BlueCheese and chapter 5 considers future development.
Chapter 6 draws the conclusions of the BlueCheese’s functionality.

3

2 Architectures and Technologies

This chapter describes the architectures and technologies used in BlueCheese.

2.1 Distributed Systems

A system in which hardware or software components located at networked comput-
ers communicate and coordinate their actions only by passing messages is defined
as a distributed system. With this definition, the distributed system includes three
main characteristics: concurrency of components, no global clock and independent
failures of components. [8]

Distributed systems are everywhere. The Internet enables users to access its ser-
vices all over the place. Organizations have their own intranets to provide interior
services. Small distributed systems can be constructed for example by mobile de-
vices. [8]

Resource sharing is the main reason for constructing distributed systems. Re-
sources like printers, files, web pages are managed by servers and accessed by
clients. For example, a web server manages and a browser accesses web pages.
[8]

The construction of distributed systems causes many challenges: [8]

1. Heterogeneity
The network has to be constructed from a variety of diverse networks, com-
puter hardware, operating systems, programming languages and implemen-
tations by different developers. Communication protocols are the solution for
difference in networks and the middleware for other differences.

2. Openness
Distributed systems should be extensible. Open systems are characterized by
the fact that their key interfaces are published. But the real challenge is the
interoperability of the components written by different programmers.

3. Security
An important thing for shared resources is security, which includes confiden-
tiality, integrity and availability. Encryption has to be used to provide pro-

4

tection of shared resources and to maintain information secret when passed
through a network.

4. Scalability
A system is described as scalable if it remains effective when there is a re-
markable increase in the number of resources and users. The algorithms for
accessing shared data prevent performance breakdowns and the hierarchical
data structure enables efficient access times.

5. Failure Handling
Computer systems fail sometimes. The fault may be aroused by a process, a
computer or the network. Therefore each component needs to be appropri-
ately designed for handling the failures for providing sufficient availability.

6. Concurrency
In a network of computers, shared resources have to provide simultaneous
processing. So each resource must be designed to be secure in a concurrent
environment e.g. avoiding deadlocks and livelocks.

7. Transparency
Transparency hides some features of distribution from the application pro-
grammers so that they need only be worried about the design of the particular
application.

2.2 Peer-to-Peer

Peer-to-Peer networks (P2P) are instances of distributed systems. A distributed net-
work may be called a Peer-to-Peer network, if the participants share a part of their
own hardware resources (for example computing power, storage capacity, network
bandwidth, printers, file sharing, etc.). Every peer in the network has a direct access
to other peers without passing via intermediary entities. The participants of such a
network are thus resource providers as well as resource requestors. So the peers are
capable of acting as a server and a client at the same time (alias servents). [28]

In contrast to Client-Server networking, Peer-to-Peer networking does not use
a centralized server for message passing making the absence of servers the biggest
difference between these two architectures (see figure 2.1). Peer-to-Peer is an archi-
tectural model, where all the peers are equal and function as a server and a client
at the same time. Peer-to-Peer networking enables faster information spreading be-
cause there is no server as a bottleneck for information diffusion. [28, 15]

5

Figure 2.1: Client-Server and Peer-to-Peer models.

The definition of Peer-to-Peer networking can be divided into two sub-definitions.
They are known as Pure Peer-to-Peer and Hybrid Peer-to-Peer networking. The net-
work is Pure Peer-to-Peer if it is firstly a Peer-to-Peer network and secondly if any
single peer can be removed from the network without having the network suffer
any loss of network service. If the network is a Peer-to-Peer network and needs a
necessary central entity to provide parts of the offered network services, it is called
a Hybrid Peer-to-Peer network. [28]

2.3 Mobile Peer-to-Peer

Mobile Peer-to-Peer network is a Peer-to-Peer network where at least one peer is a
mobile device. The structure of the network is dynamic since the mobile devices
continuously change their physical location and establish peer-to-peer communica-
tions with peers based on their proximity. Unlike in a wired network, every mobile
peer has a limited transmission range. Therefore direct communication between
two mobile peers is possible only if the peers are in the transmission range of each
other. [13, 15]

Kimmo Haukimäki [15] defines two structure models of Mobile Peer-to-Peer net-
works: Partial MP2P and Pure MP2P. These models are represented in figure 2.2.

A Peer-to-Peer network is a Partial Mobile Peer-to-Peer network, if it consists of
both mobile and immovable devices. Then at least one of the mobile devices has a
wireless connection to the immovable device. Therefore a mobile device can connect
and share services more widely than in a Pure Mobile Peer-to-Peer network. [15]

If there are only mobile devices in the Peer-to-Peer network, it is called a Pure
Mobile Peer-to-Peer network. Then all the devices are connected to each other with a
wireless technique like for example Wireless Local Area Network (WLAN) or Blue-

6

Figure 2.2: Mobile Peer-to-Peer structure models.

tooth. Because wireless techniques mostly have a small-scale functional range and
the physical locations of devices fluctuate, the network is very dynamic. Limited
range and mobility also bring challenges for efficient data communications. [15]

2.4 Middleware

The term software architecture refers to the layered structure of software in the same
device or services provided and requested between local devices or different de-
vices. This definition can also be expressed in terms of service layers. [8]

The lowest-level service layer is platform, which includes (computer and net-
work) hardware and an operating system. The operating system provides problem-
oriented abstractions of the underlying physical resources such as the processors,
memory communications and storage media. For example operating systems like
UNIX and Windows offer files rather than disk blocks or sockets rather than raw
network access. Both operating systems are examples of network operating systems,
which have a networking capability but not for example distributed process execu-
tion. [8]

A heterogeneous network generates a great challenge for the compatibility of
distributed systems. Middleware resolves the heterogeneity with shared interfaces
and protocols and simplifies the system development process by providing scripted
functionality. Middleware is defined as a layer of software between network oper-
ating systems and application components (see figure 2.3). [3, 10, 21]

Middleware is a piece of software that provides a programming model above
the basic building blocks of processes and message passing. The aim of middle-
ware is to provide application engineers with high-level primitives that simplify
distributed system construction. [8, 10] The typical operations of middleware are
providing data connection, disconnection, segmentation, reassembly, etc. [15]

Remote procedure calling packages like Sun RPC and group communication

7

Figure 2.3: The positions of application, middleware, operating system and hard-
ware components.

systems such as Isiswere were the earliest instances of middleware. Nowadays
object-oriented middleware products and standards such as Object Management
Group’s Common Object Request Broker Architecture (CORBA), Java Remote Ob-
ject Invocation (RMI), Microsoft’s Distributed Component Object Model (DCOM)
and ISO/ITU-T’s Reference Model for Open Distributed Processing (RM-ODP) are
widely used. [8]

2.5 Bluetooth

A few years ago it was recognized, that a low-cost and low-power wireless trans-
mission technology could be feasible to put into practise. The goal was to provide a
short-range radio-based ad-hoc network for portable devices with effortless service.
[24]

A special interest group (SIG) was formed in the beginning of 1998 [24]. The pur-
pose of SIG was to develop, publish and promote the preferred short-range wireless
specification for connecting mobile products, and to administer a qualification pro-
gram that fosters interoperability for a positive user experience [5].

At the beginning there were five promoters of the Bluetooth technology: Eric-
sson, IBM, Intel, Nokia and Toshiba [24]. Later on Agere Systems, Microsoft and
Motorola joined as promoter companies. Promoter companies are highly engaged
in the technical development of Bluetooth wireless technology. The Bluetooth SIG
has over 2,000 member companies, which can use Bluetooth technology [5].

8

Architecture

Bluetooth is a short-range radio technology for data transmission between portable
devices. It operates in the 2,4 GHz worldwide unlicensed Industrial Scientific Medi-
cal (ISM) band . The channel is represented by a pseudo-random hopping sequence
through 79 or 23 RF channels [9]. Bluetooth uses fast frequency hopping for low
interference and fading, Time-Division Duplex (TDD) scheme for full duplex trans-
mission and transmits using Gaussian Frequency Shift Keying (GFSK) modulation
[30].

The Bluetooth system supports both point-to-point and point-to-multipoint con-
nections. Two or more devices sharing the same channel form a piconet. There is
one master device and up to seven slave devices in a piconet. Multiple overlapped
piconets form a scatternet. Figure 2.4 illustrates piconets and a scatternet. [30] How-
ever, scatternets are not widely implemented in current Bluetooth devices.

Figure 2.4: The combination of piconet A and B forms a scatternet.

Bluetooth needs to support both synchronous services like voice and asynchro-
nous services like internet access. Bluetooth provides Asynchronous Connection-
Less (ACL) link for packet routing and up to three Synchronous Connection-Oriented
(SCO) links for circuit switching. [14, 24]

The Bluetooth system uses packet-based transmission. In each 625 microsecond
slot, only one packet can be sent. The packet consists of an access code, header and
a payload (see figure 2.5). The access code is used for synchronization and identi-
fication. The header contains lower-level link control information and the payload
carries the actual user information. There are several packet types in Bluetooth for
paging, inquiry, polling, data transmission etc. [24]

9

Figure 2.5: Standard Bluetooth packet format.

Bluetooth is a lower-layer specification from the view of Open Systems Intercon-
nection (OSI) protocol stack specification. Bluetooth specifies Physical, Data Link
and partly Network layers of the OSI model. Figure 2.6 shows the main protocols of
Bluetooth. [24]

Bluetooth Radio

Baseband

LMP L2CAP Audio

RFCOMM

Other Transport Protocols
TCS
BIN

SDP

Figure 2.6: Bluetooth stack.

The Bluetooth Radio part defines the frequency bands, channel arrangement and
receiver characteristics. Baseband defines packet format, physical and logical chan-
nels, channel control, etc. Link Manager Protocol (LMP) is used for link set-up and
control. These three protocols are usually integrated in the chips to provide hard-
ware platform for the higher layer application. [24]

Logical Link Control and Adaptation Protocol (L2CAP) supports protocol mul-
tiplexing, packet segmentation and reassembly, and the conveying of quality of ser-
vice information (for example Cyclic Redundancy Checksum (CRC)). Service Dis-
covery Protocol (SDP) is used for discovering, searching and browsing specific ser-
vices from another Bluetooth device. Radio Frequency Communications Protocol
(RFCOMM) is not a "core" Bluetooth layer. It is more like a layer above core layers
providing an interface between existing services and the Bluetooth stack. To up-

10

per layers RFCOMM is an interface that looks exactly like an RS-232 serial line. In
addition Bluetooth contains other protocols that are not described in this master’s
thesis.[24, 18]

There are several Bluetooth states for supporting functional operations like chan-
nel establishment of a piconet, adding and releasing units from a piconet. Figure
2.7 shows a state diagram of used states in Bluetooth. STANDBY and CONNECT are
two major states and the others (Page, Page Scan, Inquiry, Inquiry Scan,
Master Response, Slave Response and Inquiry Response) are sub-states.
The sub-states are used for adding new slaves to the piconet. [24]

Figure 2.7: The state diagram of Bluetooth.

When the slave is in CONNECT mode, there are three different low power modes
as regards of the purpose of the slave. HOLD may be used if there is no data to be
transmitted. Units can thus be connected without data transfer, but in low power
mode. SNIFF is also a low power mode in which the re-transmission can only be
done by master in specified time slots, so-called sniff slots. Actually, the number of
devices in a piconet is unlimited but the master can only have seven active slaves.
PARK mode is used when the slave does not need to participate on the piconet
channel, but still wants to remain synchronized to the channel. The time between
CONNECT and PARK is only approximately 2ms, so the master is able to connect
more than 7 slaves in the piconet. Figure 2.8 illustrates the connection procedures of
Bluetooth. [24]

11

Figure 2.8: The connection procedures of Bluetooth.

2.6 Symbian OS

Symbian OS is an open operating system for mobile devices. It is licensed by the
world’s leading mobile phone manufacturers such as Nokia, Siemens, etc. It is de-
signed for the functional demands and specific requirements of advanced 2G, 2.5G
and 3G mobile phones. Symbian OS combines the power of an integrated applica-
tions environment with mobile telephony, bringing advanced data services to the
mass market.

Mobile phones have a limited amount of memory, so the operating system must
be compact and still provide a rich set of functionalities. The five key characteristics
are the basis for the design and development of Symbian OS:

1. Small, but always accessible mobile devices
Small mobile devices create high expectations. The device must provide many
hours of operation to assure availability. The operating system must be de-
signed efficiently to ensure quick boot sequences when turned on and long-
lasting usage.

2. Addressing mass-market
Reliability is a prime issue for mass-market phones. Mobile phones should
never lock up or come with a significant defect. Reliability requires good soft-
ware engineering and error-handling framework. Memory leaks should also
be avoided due to a mobile device’s limited amount of memory.

12

3. Handling intermittent connectivity
Mobile connectivity is occasional and intermittent. Incomplete coverage and
fade-outs while moving requires the operating system to provide solid control
in connectivity. The operating system must offer multi-tasking, communication-
capable real-time performance and a rich set of communication protocols.

4. Product diversity
Mobile devices diverge in input mechanisms, shapes, size of the screen, etc. To
support distinct devices, Symbian OS includes a common core with function-
alities like multi-tasking, user interface framework, data service enablers, ap-
plication engines, personal information management (PIM) and wireless com-
munication. Phone manufacturers are active to extend Symbian OS and create
highly differentiated products.

5. Open platform
An operating system for the mass-market must be open for third-party de-
velopment. Symbian is committed to open standards and is actively working
with existing standards.

Symbian OS is very strict in memory control to preclude memory leaks. The allo-
cated memory has to be released by the application programmer when the memory
is not needed anymore. if the memory, is not released it could become depleted
and the operating system runs out of memory. The need for strict memory handling
comes from the fact that the handheld devices have little memory and are almost
never rebooted, so each piece of memory is precious.

13

3 BlueCheese

BlueCheese is a mobile peer-to-peer middleware that is used between Bluetooth’s
transmission protocols and mobile peer-to-peer applications. BlueCheese contains
interfaces and functionalities for mobile peer-to-peer applications (Application Pro-
gramming Interface (API) of BlueCheese is shown in appendix A). The applications
can connect to other devices and transfer data via BlueCheese. This chapter is based
on the Software Design [1] and Specification [2] documents of BlueCheese.

3.1 Protocols and Features

BlueCheese utilizes Bluetooth in data transmission procedures. L2CAP and RF-
COMM are used as data transmission protocols and SDP for service discovery (see
figure 2.6 on page 10). The architecture of BlueCheese is presented in figure 3.1.

Bluetooth

Application 1

BlueCheese

L2CAP

RFCOMM
(Stream Mode)

Baseband

Location
Service

GSM
module

Another BlueTooth device

SDP
(BC discovery)

GSM basestation

Application 2

Figure 3.1: The architecture of BlueCheese.

14

BlueCheese can only be connected to one other BlueCheese at a time. Other
devices are put into queue to wait until the prevailing connection is terminated.
However several peer-to-peer applications may run on the connected devices and
exchange data at the same time.

Location Service is also a feature of BlueCheese. It opens up a possibility to
request current location information for applications that have a session to Blue-
Cheese. The service can also compare two different locations with a rough estima-
tion of distance.

The BlueCheese class diagram is represented in figure 3.2. There are following
classes:

• CBcSession is used for an application session.

• CBcSessionServer handles application sessions.

• CReceiveQueue is the queue for incoming data.

• CBcGsmLocator is used for GSM locating.

• CBcCore is the central class coordinating the whole system and classes by pass-
ing messages between them.

• CBcNotifier discovers the nearby devices.

• CDeviceQueue maintains all discovered BlueCheese devices.

• CBcCommunicator is the central class for handling Bluetooth operations.

• CTransmitQueue is the queue for outgoing data.

• CBcListener listens for other devices’ connection requests.

• CBcConnector is used for establishing connections.

• CBcReader receives incoming data.

• CBcWriter sends outgoing data.

15

Figure 3.2: The class diagram of BlueCheese.

3.2 Functionality

This section describes the functionalities of BlueCheese.

Connections and Sessions

The terms connection and session mean different things in BlueCheese. Connection
represents the connection between the same layer of two devices and session be-
tween the layers of the same device. Figure 3.3 clarifies the difference between con-
nection and session.

When a mobile peer-to-peer application is started on a mobile device, it must
first establish a session to BlueCheese. Every application has unique ID in Blue-
Cheese (like a porting system), which allows several applications to have a session
to BlueCheese simultaneously.

The interaction between BlueCheese and applications is implemented by events.
The application can request the offered service by a function call that is transformed
into an event. The event is handled by BlueCheese as soon as possible. Respec-
tively the BlueCheese can inform the application by events such as incoming data

16

BlueCheese

Application

BluetoothBluetooth

BlueCheese

ApplicationConnection

Connection

S
es

si
on

S
es

si
on

Connection

Figure 3.3: Connections and sessions.

or disconnection. Event-typed interaction requires event handling class in the ap-
plication.

When two BlueCheese devices meet each other, they establish a connection if
they have not recently met. In connection establishment, the information is being
exchanged regarding to applications that have a session to BlueCheese. Those ap-
plications that are running in both devices are being informed that the connection is
established and the data transfer is possible. Applications can exchange their data
and the connection is terminated when all data has been exchanged and each ap-
plication has informed BlueCheese about it. Figure 3.4 illustrates connections and
sessions between two devices and the functionality of BlueCheese.

Device Handling

In all relationships between two devices, one is a master and the other one is a
slave. The master establishes a connection and the slave waits for the requests of the
master. The master also handles the device queueing. One device can be a master to
one connection and a slave to another connection, because the master is always the
device with a bigger Bluetooth address. A Bluetooth address is a 48-bit integer.

17

(a) Two applications (App1 and App2) make a session to BlueCheese.

(b) BlueCheese makes a connection to another device with BlueCheese. Informa-
tion about applications is exchanged and the applications that both devices have
are informed (in this case App2) about the connection establishment.

(c) App2 exchanges data and informs the BlueCheese that all the data has been
exchanged.

(d) The connection is terminated by BlueCheese.

Figure 3.4: Example of connection and session establishment.

Data Exchange

The content of a BlueCheese header packet is illustrated in figure 3.5. The Version
field contains the version of BlueCheese and the data type is specified with Type.
The OpCode field could include a specific operation code such as the information
for BlueCheese that the data includes the other devices’ ports (applications having
a session). The data for certain application is specified with Port and the length of
the data in the DataLengthBytes field.

18

Type (4 bits) OpCode (8 bits)

Port (16 bits)

DataLengthBytes (16 bits)

Version
(4 bits)

Figure 3.5: The content of the header packet of BlueCheese.

Location Service

Location Service is an optional feature of BlueCheese. It provides location informa-
tion to the applications that have a session to BlueCheese. Location information is
based on the Global System for Mobile Communications (GSM) network infrastruc-
ture. A GSM network consists of local areas, which include cells (see figure 3.6).
Location Service can also compare locations and estimate their distances. Locations
based on different networks cannot be compared.

Figure 3.6: GSM network infrastructure.

The estimation is made as follows:

• Unknown, if locations have different networks.

• Far away, if locations have the same network but different local areas.

• Quite close, if locations have the same local area but different cells.

• Very close, if locations have the same local area and the same cell.

19

Reliability and Security

To allow the data to spread widely, BlueCheese does not use authentication or au-
thorization in connection establishment. There is no security risk, because Blue-
Cheese is designed for transferring data, not for executing the received data.

3.3 Modifications and Improvements

Sections 3.1 and 3.2 introduced the BlueCheese as it was meant to be according to
the requirement specification of the MoPeDi software project at the University of
Jyväskylä. During this thesis work it was realized that all of the requirements can-
not be implemented to BlueCheese due to limitations of technologies, especially
restrictions of Bluetooth.

One significant restriction of the tested devices (Nokia N-Gage, Nokia 6600 and
Nokia 6630) was that they could only execute one Bluetooth operation at a time.
Therefore the following removals or improvements have been made:

• Leaving out of RFCOMM
L2CAP is used as a connection establishment protocol, so the data transmis-
sion is also committed to L2CAP because there cannot be two different proto-
cols working at the same time.

• Removal of Master/Slave definition
The Master/Slave definition was planned only for preventing duplicate con-
nections between two devices, so it is not needed anymore.

• Interference between transmission and device search
In the MoPeDi project it was planned to do the device search every 5 sec-
onds. Consequently the device search consumes all of Bluetooth’s capability
since the devices are capable of doing one Bluetooth operation at a time. Ap-
proaches to solve this kind of interference problem were:

– to do the device search at long intervals for improving the connection
establishment.

– to put the device search for a sleep during the data transmission.

– to randomize the interval for preventing devices to search in the same
phase interfering connections between them.

20

– not to do the device search if some other device is already searching de-
vices.

• Dropping multi-hopping
BlueCheese was considered to support multi-hopping, but that was left out
of the implementation due to the complexity of execution and the absence of
scatternet capability in the devices. Scatternet inability is illustrated in figure
3.7 wherein a connection cannot be established with a connected master (in
the left) nor a connected slave (in the right). In spite of all, it is possible to
have multi-hop by using point-to-multipoint support found in Nokia Sym-
bian Series 60 devices. Then the master device could function as a router for
data transmission to the slaves. This idea of multi-hopping is basically a "two-
hopping", so the benefit of implementing it is small. The figure 3.8 illustrates
the point-to-multipoint connection.

Figure 3.7: Failed scatternet initiations.

Figure 3.8: Point-to-multipoint connection.

21

3.4 Comparison of BlueCheese and Nokia Proximity Toolkit

Mobile Peer-to-Peer applications are divided into two general areas:

• Active Collaboration
User activity is needed in active collaboration, which focuses to exchange in-
formation by using non-intrusive user notifications. Nokia Proximity Toolkit
is well suited for active collaboration applications. BlueCheese on the other
hand is not adequate enough for active collaboration applications due to the
lack of manual device search and connection establishment for providing user
actions.

• Passive Collaboration
Passive collaboration aims to collect and pass information to the users without
user interaction. BlueCheese is mainly designed for passive collaboration ap-
plications such as Gasoline Price Comparison System. Nokia Proximity Toolkit
can handle passive collaboration applications, but not very effectively due to
long (20 minutes) intervals of automatic device search and connection estab-
lishment. Consequently, the user action is needed almost every time for con-
nection establishment.

Building blocks for Mobile Peer-to-Peer applications include common function-
alities. These features are described as services. [29]

• Presence Awareness Service provides the information of active users in commu-
nication range.

• Message Exchange Service allows sending and receiving messages between nearby
users.

• Information Filtering Service provides a filtering mechanism for preventing SPAM
or other irrelevant information.

• Information Distribution Service offers three choices for sharing the received in-
formation; sharing straight away, choosing when and with whom to share or
not sharing at all.

• Security Service offers sign and encrypt operations for data communications.

• Identity Management Service offers identification management for the system.
Users may appear on THE system anonymously, under a pseudonym or with
assigned identifies.

22

• Service for Incentive Schemes offers stimulative bonus for individual users for
using the application.

• Reputation Service provides the build of reputation in the application. Other
users might value the received information based on the reputation of the
sender.

• User Notification Service informs the user of incoming information that may
require instant response.

Table 3.1 summarizes the common services and their conceptual usage in Blue-
Cheese and Nokia Proximity Toolkit.

BlueCheese Nokia Proximity Toolkit
Presence Awareness Service YES YES
Message Exchange Service YES YES
Information Filtering Service NO NO
Information Distribution Service NO NO
Security Service NO YES
Identity Management Service YES YES
Service for Incentive Schemes NO NO
Reputation Service NO NO
User Notification Service YES YES

Table 3.1: Services of BlueCheese and Nokia Proximity Toolkit.

3.5 Gasoline Price Comparison System

The idea for the Gasoline Price Comparison System (GPCS) application emerged
from professor Jarkko Vuori from the University of Jyväskylä. GPCS is a mobile
application, which can be run in the Symbian OS mobile devices. Its task is to collect
information about the gas prices of different gas stations and then make decisions
on where to refuel. Gasoline Price Comparison System has been devised by Oleksiy
Volovikov [32].

In the system a mobile device gets the information of the gas price from the
gas station where the car is refuelled. Then it starts to spread the information to
other mobile devices. Figure 3.9 represents the data spreading in Gasoline Price
Comparison System.

23

(a) In the future it is possible to make payments with a mobile device, so the gas
station could give the gasoline price information in the bill when the fuel is paid.

(b) When the mobile device with gasoline price information meets another device
with GPCS, the information is exchanged between them. Thereby the data can
spread to other devices as well.

Figure 3.9: Example of information diffusion in Gasoline Price Comparison System.

24

4 Measurements and Analysis

In the test cases there were three different phones, which each had a different version
of Symbian OS:

• Nokia N-Gage with Symbian OS 6.1 and Bluetooth v1.1

• Nokia 6600 with Symbian OS 7.0 and Bluetooth v1.1

• Nokia 6630 with Symbian OS 8.0 and Bluetooth v1.2

Tools for test cases were Symbian 6.1 and 7.0 SDKs, Nokia Connectivity Frame-
work 1.2, Bluetake BT009X Bluetooth USB Adapter and the phones mentioned above
(see figure 4.1).

Figure 4.1: Phones and adapters in the test cases.

All the tests were made indoors at a room temperature of approximately 20 de-
grees celsius. There may have been disruptive factors that may have affected the test
cases like for example a possible use of WLAN networks, other Bluetooth devices
or microwave ovens.

4.1 Battery Power

Battery Power was measured in three different ways for all three phones: standby
time, continuous device discovery and continuous data transfer.

By using these measurements we can estimate the Bluetooth power consump-
tion, which is in a significant role in the analysis of Mobile Peer-to-Peer middle-
wares.

25

4.1.1 Standby Time

Standby time was measured simply by using the phone’s power on without having
any data or network connections or using the power consuming applications like for
example camera. The test was made ten times for all the phones. Table 4.1 shows
standby times for each phone with ten measurements t1 - t10.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Nokia N-Gage 70 60 142 88 96 126 82 136 86 78
Nokia 6600 127 126 114 122 110 118 125 120 114 122
Nokia 6630 220 178 186 204 208 194 176 202 192 180

Table 4.1: Standby times of Nokia N-Gage, 6600 and 6630 in hours.

Now we can calculate descriptive statistics for measurements. The formula of
mean is represented in equation 4.1 and equation 4.2 shows the formula of standard
deviation. Table 4.2 shows the minimum, maximum, mean and standard deviation
of standby times for each phone.

t =
1

n

n∑

i=1

ti (4.1)

σ =

√√√√ 1

n− 1

n∑

i=1

(ti − t)2 (4.2)

min max t σ

Nokia N-Gage 60 142 96.4 28.4
Nokia 6600 110 127 119.8 5.7
Nokia 6630 176 220 194.0 14.5

Table 4.2: Descriptive statistics of phones’ standby times.

Nokia informs that Nokia N-Gage has a standby time of 150-200 hours. As can be
seen from the chart, 150 hours is nearly achieved two times. The measured standby
times vary a lot, showing signs of unsuitable battery or incomplete charging.

Nokia 6600 has even 240 hours of standby time according to Nokia, but the mea-
sured times are only half of that. Although the standby time does not vary much,
the maximum capacity cannot be reached. The battery might be worn out and not
as good as a new one.

26

Nokia 6630 is the newest phone in the test. Nokia advertises almost 11 days of
standby for 6630. The measured values reach 9 days which is very customary.

4.1.2 Continuous Device Discovery

Standby time with continuous Bluetooth activity was measured by having the de-
vice discovery in action until the depletion of the batteries. Table 4.3 shows the
power consumption for each phone when there is continuous device discovery go-
ing on.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Nokia N-Gage 6 8 7 7.5 6.5 7 7 8 7 6.5
Nokia 6600 8 9 8.5 8 8 9 8.5 8 9 8
Nokia 6630 11 10 10.5 11 11 10 10 9.5 11 10.5

Table 4.3: Standby times of Nokia N-Gage, 6600 and 6630 in hours during continu-
ous device discovery.

Table 4.4 shows the minimum, maximum, mean and standard deviation of standby
times for each phone during continuous device discovery (see formulas for calcula-
tions in equations 4.1 and 4.2 on page 26).

min max t σ

Nokia N-Gage 6 8 7.05 0.64
Nokia 6600 8 9 8.40 0.46
Nokia 6630 9.5 11 10.45 0.55

Table 4.4: Descriptive statistics of phones’ standby times during continuous device
discovery.

4.1.3 Continuous Data Transfer

Standby time was measured also by transferring data by turns without acknowl-
edgement between devices all the time. Table 4.5 shows the power consumption for
each phone when there is continuous data transfer going on.

Table 4.6 shows the minimum, maximum, mean and standard deviation of standby
times for each phone during continuous data transfer (see formulas for calculations
in equations 4.1 and 4.2 on page 26).

27

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Nokia N-Gage 8.5 8 8 7.5 8 8 8.5 8 8 8
Nokia 6600 9.5 10 9.5 9.5 9.5 9 9.5 9 9.5 9
Nokia 6630 9.5 10 10 9.5 10.5 10 9.5 9.5 10.5 9.5

Table 4.5: Standby times of Nokia N-Gage, 6600 and 6630 in hours during continu-
ous data transfer.

min max t σ

Nokia N-Gage 7.5 8.5 8.05 0.28
Nokia 6600 9 10 9.40 0.32
Nokia 6630 9.5 10.5 9.85 0.41

Table 4.6: Descriptive statistics of phones’ standby times during continuous data
transfer.

4.1.4 Summary

Bluetooth power consumption is a major factor in estimating the suitability of Blue-
Cheese for Mobile Peer-to-Peer communications. Figure 4.2 illustrates Bluetooth
power consumption compared to standby time. According to graphs, a device with
Bluetooth action needs over 10 times greater power than the device in standby
mode.

Obviously the battery cannot provide the maximal capacity so the electric cur-
rent cannot be calculated without knowing the current capacity. There are various
factors that dictate the capacity of the battery like for example temperature, inte-
rior resistance of battery, all kinds of memory effects, charging situation, charging
voltage, etc.

Capacity is proportional to electric current (P = RI2; wherein P is capacity, R
is resistance and I is electric current), so Bluetooth increases significantly the loss
of power caused by the interior resistance of the battery and decreases the battery
life. High power consumption can also turn off the phone before its time, because
the terminal voltage decreases during burdening the battery (U = E − RI ; wherein
U is terminal voltage, E is source voltage, R is resistance and I is electric current).
The device can fuse, even if there could be current remaining, because of the need
of minimum voltage for keeping it alive.

All tested phones use a lithium ion (Li-ion) battery. Li-ion batteries do not suffer
from the memory effect. They also have a low self-discharge rate (approximately 5%

28

Figure 4.2: Bluetooth power consumption in contrast to standby time.

per month) and their lifespan remains relatively unaffected if they are kept plugged
in after they have been fully charged. A unique drawback of the Li-ion battery is
that its lifespan is dependent upon aging from time of manufacturing regardless of
whether it was charged, and not just on the number of charge/discharge cycles. So
the battery loses irreversibly capacity in the course of time. [34]

4.2 Data Transfer

There were three different tests for estimating data transfer capabilities: device dis-
covery rate, connection establishment rate and data transfer rate.

4.2.1 Device Discovery Rate

Device discovery rate was measured in three circumstances wherein the number of
devices around changed. Measurements, which are shown in table 4.7, were made
with 0, 1 and 2 devices in the Bluetooth operation range. Table 4.8 shows the mini-
mum, maximum, mean and standard deviation of device discovery times.

29

Nokia N-Gage t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0 device around 13.5 13.5 13.8 13.5 13.7 13.5 13.5 13.7 13.6 13.5
1 device around 15.7 15.6 15.3 15.6 15.7 15.8 16.0 16.0 15.8 15.4
2 devices around 17.0 16.9 16.4 17.1 16.9 17.0 17.2 16.9 16.6 16.3

Nokia 6600 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0 device around 14.0 13.6 13.5 13.8 13.7 13.7 13.9 13.6 13.7 13.6
1 device around 15.5 15.0 14.8 14.9 15.0 14.5 14.8 14.4 14.6 14.9
2 devices around 16.8 16.4 16.0 16.6 15.7 15.4 16.0 15.6 15.7 15.8

Nokia 6630 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0 device around 13.2 13.4 13.3 13.4 13.3 13.4 13.3 13.4 13.3 13.4
1 device around 14.5 14.7 14.0 14.6 14.3 14.1 14.4 14.7 14.0 14.1
2 devices around 15.0 15.4 17.4 17.3 15.4 15.2 17.2 17.6 15.0 17.3

Table 4.7: The device discovery time in seconds for each phone with 0, 1 and 2
devices around.

Nokia N-Gage min max t σ

0 device around 13.5 13.8 13.6 0.11
1 device around 15.3 16.0 15.7 0.23
2 devices around 16.3 17.2 16.8 0.30

Nokia 6600 min max t σ

0 device around 13.5 14.0 13.7 0.15
1 device around 14.4 15.5 14.8 0.31
2 devices around 15.4 16.8 16.0 0.46

Nokia 6630 min max t σ

0 device around 13.2 13.4 13.3 0.07
1 device around 14.0 14.7 14.3 0.28
2 devices around 15.0 17.6 16.3 1.15

Table 4.8: Descriptive statistics of phones’ device discovery times.

30

Measurements show that device discovery takes about 15 seconds to complete
regardless of the phone model. Search rate also depends on how many devices are
around. Measurements illustrate that if the number of devices around grows by one,
the device discovery time grows about 1 - 2 seconds.

According to the specification of Bluetooth version 1.1 (in Nokia N-Gage and
Nokia 6600), the device search takes 10.24 seconds in an error free environment.
An enhanced inquiry requires 5 seconds and interlaced inquiry 2.5 seconds in Blue-
tooth 1.2 (in Nokia 6630), but 10 seconds is often used due to compatibility reasons.
SDP uses L2CAP for transporting protocol providing service search and PAGE -
procedure (aka connection establishment) lasts 0.64 - 2.56 seconds in theory (average
1.28 seconds). Now we can calculate theoretical values for device searches. [19]

t = tINQUIRY + n× tSDP (4.3)

0 device around
tmin = 10.24 + 0× 0.64 = 10.24 s
tmean = 10.24 + 0× 1.28 = 10.24 s
tmax = 10.24 + 0× 2.56 = 10.24 s

1 device around
tmin = 10.24 + 1× 0.64 = 10.88 s
tmean = 10.24 + 1× 1.28 = 11.52 s
tmax = 10.24 + 1× 2.56 = 12.80 s

2 devices around
tmin = 10.24 + 2× 0.64 = 11.52 s
tmean = 10.24 + 2× 1.28 = 12.80 s
tmax = 10.24 + 2× 2.56 = 15.36 s

The theoretical mean values differ from the practical values by about 3 - 4 sec-
onds. There is no guarantee of successful inquiry in a noisy or error-prone environ-
ment since the packets may corrupt in those circumstances. Therefore the inquiry
time may far exceed the theoretical time of 10.24 seconds. Figure 4.3 illustrates the
device discovery time in all three cases compared to the theoretical values.

31

Figure 4.3: Min, max and mean of device discovery times with 0, 1 and 2 devices
around in theory and in practice.

4.2.2 Connection Establishment Rate

Connection establishment rate was measured as a time that went from starting the
Bluetooth inquiry to receiving a connection establishment event in the test program.
Measurements, which are shown in table 4.9, were made with 2 devices wherein
the devices were not in the same device discovery phase searching simultaneously.
Thus we can estimate the connection establishment time of the device, otherwise
we cannot be sure which one of the devices established the connection. Table 4.10
shows the minimum, maximum, mean and standard deviation of device discovery
times.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Nokia N-Gage 15.2 15.3 15.2 15.1 15.6 19.3 19.2 16.8 15.2 15.4
Nokia 6600 16.2 19.4 15.7 15.8 18.4 15.6 16.5 17.4 18.6 15.9
Nokia 6630 18.4 18.6 18.3 18.1 18.8 17.4 18.8 19.2 16.7 19.2

Table 4.9: Connection establishment time of phones.

As said in the previous section, average PAGE -procedure (connection establish-
ment) lasts 1.28 seconds in theory. The range of paging fluctuates between 0.64 and
2.56 seconds.

32

min max t σ

Nokia N-Gage 15.1 19.3 16.2 1.67
Nokia 6600 15.6 19.4 17.0 1.40
Nokia 6630 16.7 19.2 18.4 0.79

Table 4.10: Descriptive statistics of connection establishment rate.

The BlueCheese communication part, which controls Bluetooth operations, works
like a state machine which tries to connect every 3 seconds. If there are no devices
found in the device list, BlueCheese waits 3 seconds to check and try again. In
that case, 0 - 3 seconds (tDELAY) needs to be added for the calculation of theoretical
values. Also there were no other Bluetooth devices around to distract the inquiry
(number of devices around: n = 1). Now we can calculate the theoretical values for
connection establishment rate.

t = tINQUIRY + n× tSDP + tPAGE + tDELAY (4.4)

tmin = 10.24 + 1× 0.64 + 0.64 + 0 = 11.52 s
tmean = 10.24 + 1× 1.28 + 1.28 + 1.5 = 14.30 s
tmax = 10.24 + 1× 2.56 + 2.56 + 3 = 18.36 s

The theoretical mean values differ from the practical values by about 2 - 4 sec-
onds. The cause of that is in an error-prone test environment. Although the theoret-
ical maximum value was exceeded rarely in the tests (only approximately 37 % of
test values). Figure 4.4 illustrates the connection establishment rate in all three cases
compared to the theoretical values.

Time to establish an L2CAP connection is small compared to the time to per-
form device discovery. This lengthy discovery time becomes critical in certain sit-
uations like for example Peer-to-Peer communication wherein the devices are in
motion. On this account, there are plenty of developed solutions that use additional
technologies for performing the device discovery. For example Radio Frequency
Identification (RFID), Infrared Data Association (IrDA) and visual tags (like a bar
code to Bluetooth address) are used to improve performance. These solutions are
not decent for BlueCheese, because they assume that devices know the presence of
each other whereas the key factor in BlueCheese is in information diffusion among
unknown devices.

33

Figure 4.4: Min, max and mean of connection establishment times in theory and in
practice.

4.2.3 Data Transfer Rate

Data transfer rate was measured between all the phones with two kinds of pack-
ets. Data transmission was done by turns without acknowledgements between de-
vices measuring the amount of packets in one minute. The data in the packets were
strings of 10 and 100 characters, so the payloads of the packets were respectively
80 bits and 800 bits. Measurements of data transfers are shown in table 4.11 and
descriptive statistics (minimum, maximum, mean and standard deviation) are rep-
resented in table 4.12.

à 80 bit n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

N-Gage ↔ 6600 88 90 88 90 90 89 85 88 87 90
N-Gage ↔ 6630 108 107 108 108 107 108 109 107 108 108
6600 ↔ 6630 100 96 96 98 99 98 98 100 97 98

à 800 bit n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

N-Gage ↔ 6600 84 85 86 84 86 85 84 84 84 85
N-Gage ↔ 6630 101 103 102 101 102 103 102 102 103 102
6600 ↔ 6630 100 100 98 97 97 99 98 98 97 96

Table 4.11: Amount of packets transfered during one minute.

34

á 80 bit min max n σ

N-Gage ↔ 6600 85 90 88.5 1.65
N-Gage ↔ 6630 107 109 107.8 0.63
6600 ↔ 6630 96 100 98.0 1.41

á 800 bit min max n σ

N-Gage ↔ 6600 84 86 84.7 0.82
N-Gage ↔ 6630 101 103 102.1 0.74
6600 ↔ 6630 96 100 98.0 1.33

Table 4.12: Descriptive statistics of data transfer.

If the payload size of packet is grown 10 times from 80 bits to 800 bits, the time
of transferring the packet to recipient is nearly the same. According to Bluetooth
version 1.1 specification, the ACL link can handle the maximum of 732 kbps, so the
time for transferring 80 and 800 bits payload should be equal. Consequently the
measurements qualify sufficiently with the specification. Overall the payload of 80
- 800 bits are transmitted approximately in one second between devices.

BlueCheese uses two packets in one data transmission. A header packet is sent
at first to specify the packet type and payload size. That feature must be taken into
account when calculating the data transfer rate.

Bitrate(R) =
number of bits

unit of time
(4.5)

80 bits payload

RN−Gage↔6600 =
88.5× (48 + 80)

60
≈ 189 bps = 0.189 kbps

RN−Gage↔6630 =
107.8× (48 + 80)

60
≈ 230 bps = 0.230 kbps

R6630↔6600 =
98.0× (48 + 80)

60
≈ 209 bps = 0.209 kbps

800 bits payload

RN−Gage↔6600 =
84.7× (48 + 800)

60
≈ 1197 bps = 1.197 kbps

35

RN−Gage↔6630 =
102.1× (48 + 800)

60
≈ 1443 bps = 1.443 kbps

R6630↔6600 =
98.0× (48 + 800)

60
≈ 1385 bps = 1.385 kbps

4.3 Fault-tolerance

Fault tolerance was contemplated as general errors and data transfer faults.

4.3.1 General Errors

During the tests, BlueCheese crashed a few times. Crashes occured mainly in un-
natural circumstances like for example:

• The test application crashed and was restarted

• The test application closed the BlueCheese session during the data transfer
(not always)

• Bluetooth was turned off during the running of BlueCheese

• The phone was turned off during the data transfer

4.3.2 Data Transfer

Regarding to data transfer, there were no faults. The reason for that could be in
L2CAP reliability.

L2CAP was used as a transmission protocol, which provides protocol multiplex-
ing, packet segmentation and reassembly. In connection-oriented sessions, L2CAP
sends data frames that are sequenced and numbered. Data frames must be delivered
in order, so the L2CAP layer provides reliability.

Because the baseband layer does not distinguish data streams from separate up-
per layers, the L2CAP layer provides protocol multiplexing between the various
types of the upper layer protocols. It gathers the upper protocol types and presents
one data stream to the baseband layer.

Data stream segmentation and reassembly provides the freedom for the upper
layers to make packets that are larger than the baseband layer will handle. L2CAP
makes this possible by segmenting large upper layer data frames into frames that
the baseband can handle. L2CAP also reassembles the frames from the baseband
into the appropriate frames for the upper levels. This allows to the upper layers
flexibility and efficiency in protocol interleaving. [18]

36

4.4 Location Service

Location Service works effectively and location information is fetched in less than
a second in every device. Different types of networks however are problematic
for location estimations. For example Nokia 6630 works in the 3G network and
fetches the location information based on the 3G network structure (if there is a
network available). So even if the devices were side by side, the location estimation
could misinform on the basis of different types of networks. 2G and 3G location
information cannot be compared with each other.

37

5 Future Development and Aspects

This chapter proposes improvements and considers future scenarios for Mobile Peer-
to-Peer communications. There are plenty of possibilities how to enhance wireless
communications and improve the utilization of Mobile Peer-to-Peer middlewares
like BlueCheese. In sections 5.1 and 5.2 extra features for BlueCheese are proposed,
as against in sections 5.3 and 5.4 alternative ways for improving BlueCheese is dis-
cussed.

5.1 Combining Peer-to-Peer and Client-Server Architectures

One potential improvement in the future could be to exploit the benefits of both
Peer-to-Peer and Client-Server architectures by using them simultaneously. The
possibility to choose the architecture in BlueCheese could provide less lack of com-
munication and better availability.

The battery exhaustion is also a big problem in BlueCheese. By using client mode
the device can enlarge the standby time hugely because then the device search is not
performed. When using the server mode, the device constantly acts as a master for
Bluetooth connections searching other devices and trying to establish data links.

The usage of Client-Server architecture could bring opportunities to application
development, too. Server side applications could be positioned everywhere. For
example stores could use a server side application to offer special offers or the city
could offer better information services. The benefit of stationary information dis-
tributors is that there is no battery problem and the communication could be done
with client or Peer-to-Peer mode in the receiver side. Obviously the infrastructure
is needed and the mobility of devices has an important role because stationary dis-
tributors work only as hot spots.

5.2 Additional Database Web Server

In addition to using BlueCheese with both Peer-to-Peer and Client-Server architec-
tures, an additional database web server could bring a supplemental benefit. The
centralized server stores device and application information, which is available to

38

all devices regardless of their locations. Naturally the device needs to be connected
to the Internet using for example General Packet Radio System (GPRS) or Universal
Mobile Telephone System (UMTS) techniques. The additional database web server
is represented in figure 5.1.

Figure 5.1: Additional web server with database.

Let’s review a couple of scenarios concerning an additional database web server.

Scenario 1: Added value for Gasoline Price Comparison System
It is possible to ask the server where is the nearest gas station and what is the
price. The server gives the information based on the location that the ques-
tioner has.

Scenario 2: Added value for BlueCheese
The server stores the device information too, so it is possible to ask the server
if there are nearby devices. If not, the BlueCheese can be turned off for saving
battery power.

Despite of two added values mentioned above, an additional database web server
has disadvantages too. Mobile devices need the infrastructure for accessing the In-
ternet and obviously the data transmissions over the Internet cost. Also the devices’
locations change all the time, so the maintenance of location information is trouble-
some and inaccurate.

5.3 New Bluetooth Specifications

BlueCheese has restrictions that inhibit pure Peer-to-Peer communication. One of
the most significant complications is that most of the smart phones provide only
one Bluetooth action at a time. The limited bandwidth is the reason for supporting
only one Bluetooth connection.

The Bluetooth specification 2.0 expands the bandwidth so that the data rate im-
proves about three times. The progression is made by the Enhanced Data Rate (EDR)

39

technique, which provides the data rate above 2 Mbit/s. That might open up a pos-
sibility for devices to support multiple simultaneous Bluetooth connections. [5]

Another important advancement in the Bluetooth specification 2.0 is the power
consumption. The specification lowers the power consumption to half which pro-
vides better standby times for the devices. In addition, devices with the Bluetooth
2.0 version are compatible with the devices having an older version of Bluetooth.
[5]

Besides Enhanced Data Rate, the other improvements are designed by Bluetooth
Special Interest Group. In 2005 the focus was to enhance security, power consump-
tion and Quality of Service (QoS). These improvements advance the support of mul-
tiple concurrent data connections and also the piconet size is supposed to raise up
to 256 devices. In 2006 the aim is to standardize Multicast technique, which could
be a remarkable reform concerning Mobile Peer-to-Peer architecture.[5]

New Bluetooth versions give many additional advantages. Several connections
and protocols can be used at the same time. The behaviour of BlueCheese could
change dramatically because of the simultaneous Bluetooth operations like for ex-
ample packet and stream data transmission modes or concurrent device search and
connection. Consequently the utilization would improve and the data could dis-
seminate more efficiently in Mobile Peer-to-Peer networks.

5.4 Other Wireless Standards

There are several wireless standards besides Bluetooth. This section describes the
most prevalent architectures including the following standards: ZigBee, Wireless
Local Area Networks (WLANs) and Ultra Wide Band (UWB).

5.4.1 ZigBee

Most of the wireless standards like Bluetooth or Wireless Local Area Networks
(WLANs) are settled to high data rates for use of e.g. voice and video. So far there
has not been a standard for applications which do not need high bandwidth, but
which do need low latency and low power consumption. ZigBee is designed for
industrial sensors and control devices, which are instances of those kind of applica-
tions. [36, 11]

ZigBee’s origin can be dated to 1998 when Motorola started to devise low power
mesh networking. ZigBee consists of IEEE 802.15.4 specification, which defines
the RF capability of a system operating in three license-free Industrial Scientific

40

Medicine (ISM) bands – at 2.4 GHz globally, 915 MHz in North America and 868
Mhz in Europe. The IEEE 802.15.4 standard was based on Motorola’s proposal
and was ratified in May 2003 by the Institute of Electrical and Electronics Engineers
(IEEE) and endorsed shortly afterwards by the ZigBee Alliance, which was formed
in mid-2002 in co-ordination with Phillips, Motorola, Invensys, Honeywell and Mit-
subishi. The IEEE defines only the Physical (PHY) and Medium Access Control
(MAC) layers in its standard. ZigBee Alliance is developing a specification cover-
ing the network/link, security and application layers of the standard, which was
ratified in December 2004. IEEE 802.15.4 / ZigBee stack is represented in figure 5.2.
[4, 11, 26]

Figure 5.2: IEEE 802.15.4 / ZigBee stack.

Nowadays the ZigBee Alliance has over 70 member companies. Founder mem-
bers of ZigBee Alliance, Samsung, Ember and Freescale have taken on the promoter
status. They think that the market size of ZigBee could be valued at some hundreds
of millions of dollars by 2007. Also the ZigBee Alliance is forecasting that there
could be 50 to 150 ZigBee devices per household in a few years. [11, 26]

ZigBee uses three frequency bands, so the standard is able to operate globally.
The specification for each band differs slightly. At 2.4 GHz there are 16 channels
providing the maximum data rate of 250 kbps. In lower frequency bands there are
10 channels with 40 kbps for 915 Mhz and in 868 Mhz only one channel with the
maximum data rate of 20 kbps. The multiplexing is done with Direct Sequence
Spread Spectrum (DSSS) in all frequency bands, but the modulation techniques are
different. 2.4 GHz uses Offset Quadrature Phase Shift Keying (OQPSK) whereas
lower frequency bands are based on Binary Phase Shift Keying (BPSK). [26]

ZigBee supports three network topologies – star, mesh and cluster tree (see fig-
ure 5.3). The star network is very common and simple whereas the mesh network

41

has a capability of routing packets through various paths. The cluster tree (also
called as hybrid) network is deployed for networks requiring complexity and it is a
combination of star and mesh networks. [26, 36]

Figure 5.3: Network topologies of ZigBee.

The IEEE standard defines two types of devices: Full Function Device (FFD) and
Reduced Function Device (RFD). FFD can function in any topology and is capable
of being a Personal Area Network (PAN) coordinator or a router. RFD is limited
to the star topology as a network-edge device and communicates only to a PAN
coordinator or a router. [36]

ZigBee network requires one FFD as a PAN coordinator. This device sets up a
network, transmits network beacons, manages network nodes, stores network node
information and routes messages between paired nodes. Network may be extended
through the use of ZigBee routers. [36]

ZigBee networks can use beacon or non-beacon environments. ZigBee uses the
Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) technique for
channel access avoiding unnecessary clashes in a non-beacon environment. Bea-
con mode is a mechanism for controlling power consumption in extended networks
such as cluster tree or mesh. It enables all the network devices to know when to
communicate with each other. The beacon wakes up the devices, which listen for
their address and go back to sleep if they do not receive it. [36]

Data is transferred as packets with a maximum size of 128 bytes containing 104
bytes payload. The standard supports 64-bit IEEE addresses as well as 16-bit short
addresses. The 64-bit addresses identify devices and the short addresses are used
when the network is set up. The network supports over 65000 devices, which is
much compared to Bluetooth’s piconet with 8 devices. ZigBee also has an optional
superframe structure with a time synchronizing method. This method allows Guar-
anteed Time Slot (GTS) for each device for the high-priority communication. [26, 36]

The key factor of ZigBee is low power consumption. ZigBee places reliance on a
central mains-powered coordinator for yielding minimal power consumption to the

42

nodes. Advances in low-power design have enabled battery life to be typically mea-
sured in years whereas the Bluetooth power consumption in general is measured in
days. In transmit/receive mode the ZigBee drains approximately twice less than
Bluetooth.

Low latency is another important feature of ZigBee. CSMA-CA and beaconing
bring in high throughput and low latency for devices. ZigBee devices can quickly
attach, exchange information, detach, and then go to deep sleep to achieve a very
long battery life. Bluetooth devices require about 100 times more energy for this
operation. The latencies of ZigBee and Bluetooth are compared in table 5.1, which
shows a great difference in non-active slave operations. [11, 26, 36]

ZigBee Bluetooth
New slave enumeration 30ms 20s
Sleeping slave changing to active 15ms 3s
Active slave channel access 15ms 2ms

Table 5.1: Comparison of latency with relation to ZigBee and Bluetooth.

According to table 5.1, ZigBee is a swift network builder compared to Bluetooth.
Bluetooth requires about 20 seconds for an inquiry which is not sufficient for effi-
cient Mobile Peer-to-Peer communications. The same operation can be done in less
than a second with ZigBee. Although ZigBee has a quadruple lower bandwidth, it is
a more suitable technique than Bluetooth for middlewares like BlueCheese because
of its very low power consumption and extremely low latency. The problem is the
lack of support in contemporary devices.

5.4.2 Wireless Local Area Networks (WLANs)

Wireless Local Area Networks (WLANs) are rapidly becoming a popular commu-
nication infrastructure. The growth of laptops and personal mobility products have
strengthened the demand of WLAN infrastructure. Business users expect that they
can access the private intranet of their own company by using other WLAN net-
works. [6]

The IEEE 802.11 standard has been referred to Wi-Fi (for wireless fidelity), which
is in fact a trademark certifying device interoperability relative to a set of tests de-
fined by Wi-Fi Alliance. Successful products are awarded Wi-Fi sticker providing
interoperability between other Wi-Fi approved products.

The IEEE 802.11 standard family defines the physical and the MAC layer for

43

wireless communications within a short range. The series of IEEE 802.11 standards
is illustrated in table 5.2. [12]

Standard Description Status
IEEE 802.11 WLAN; up to 2 Mb/s; 2.4 GHz Approved 1997
IEEE 802.11a WLAN; up to 54 Mb/s; 5 GHz Approved 1999
IEEE 802.11b WLAN; up to 11 Mb/s; 2.4 GHz Approved 1999
IEEE 802.11g WLAN; up to 54 Mb/s; 2.4 GHz Approved 2003
IEEE 802.11e New coordination functions for QoS Task group development
IEEE 802.11f IAAP (Inter-AP Protocol) Approved 2003
IEEE 802.11h Use of the 5 GHz band in Europe Approved 2003
IEEE 802.11i New encryption standards Approved 2004
IEEE 802.11n MIMO physical layer Task group development

Table 5.2: IEEE 802.11 standards family. [12]

The IEEE 802.11 standards differ at the physical layer, but the family shares the
same MAC layer. The MAC layer is responsible for overseeing that the devices take
it in turn to access a shared transmission medium. Carrier Sense Multiple Access /
Collision Avoidance (CSMA/CA) and an optional Request to Send / Clear to Send
(RTS/CTS) is used for sharing and accessing the radio channel. The MAC layer also
takes care of packet transmission errors and makes sure that a lost or broken packet
is retransmitted. This is simply achieved by returning positive acknowledgement
(ACK) for every transmitted data packet. If the ACK does not come through, ei-
ther the packet or ACK itself is lost, which necessitates resending the previous data
packet. [6]

IEEE 802.11b is specified in 2.4 GHz band and it was ratified in 1999. The mod-
ulation is Complementary Code Keying (CCK) that is based on the original Direct-
Sequence Spread Spectrum (DSSS) modulation of the IEEE 802.11 physical layer.
IEEE 802.11b is usually used in the infrastructure topology, wherein an Access Point
(AP) is providing communications to one or more clients located in the coverage
area. Typical indoor range is tens of metres whereas outdoors it is over a hundred
metres. IEEE 802.11b products can operate at 11, 5.5, 2 and 1 Mbit/s depending on
the signal strength. When the signal weakens, the lower data rates are used with
less complex and more redundant methods of encoding the data, which reduce the
corruption and interference problems. [17, 20, 12]

In 2003, the IEEE approved the 802.11g standard. The modulation technique is
Orthogonal Frequency Division Multiplexing (OFDM) that provides signal rates of

44

6, 9, 12, 18, 24, 36, 48 and 54 Mbit/s in the 2.4 GHz ISM band. The IEEE 802.11g
devices are backward compatible with IEEE 802.11b devices, but the presence of
an 802.11b participant significantly reduces the speed of an 802.11g network. The
maximum range of IEEE 802.11g is a little bit greater than in IEEE 802.11b, but the
coverage area of full bandwidth is much smaller. [17, 12]

5.4.3 Ultra Wideband (UWB)

In the past Ultra Wideband (UWB) was used for radars, sensing, military commu-
nications and niche applications. A large-scale research for using UWB for data
communications started up in February 2002 when the Federal Communications
Commission (FCC) unleashed the UWB spectrum. [35, 23]

Ultra Wideband (UWB) is a new very high bit rate radio technology under stan-
dardization in IEEE 802.15.3a. It operates in 3.1 - 10.6 GHz band and can offer even
500 times greater data rate than current Bluetooth. In addition, the spatial capac-
ity (the ratio between the aggregated data transfer speed and the transmission area
used) of UWB is enormous compared to other wireless standards (see figure 5.4).
The UWB rulings issued by the FCC limit the transmit power to -41.25 dBm/Mhz,
which relegates UWB for short-range high data rate (HDR) or very low data rate
(LDR) in long-range. UWB is capable of hundreds of Mb/s in the distances less
than 4 metres and above 100 Mb/s for ranges of 10-20 metres. [23, 27]

Figure 5.4: Spatial capacity of wireless standards. [23]

The major potential of UWB is its ability to switch between short-range HDR and
wide-range LDR. The trade-off is facilitated by the physical layer signal structure. A

45

UWB transmission is based on pulses, where multiple pulses are combined to carry
1-bit information. Basically the data rate can be changed by simply increasing the
number of pulses to carry 1-bit. More pulses per bit leads to a lower data rate and a
greater transmission distance. [23]

Although with strict power restrictions, UWB holds great potential for ad hoc
and peer-to-peer communications. The figure 5.5 shows envisaged applications that
are well suited for UWB. UWB is assumed to conquer as a new wireless world as
a result of a comprehensive integration of existing and future wireless systems.
Integration consists of wide area networks (WANs), wireless local area networks
(WLANs), wireless personal area and body area networks (WPANs and WBANs) as
well as ad hoc and home area networks that link devices such as personal comput-
ers, home entertainment and mobile devices. [23, 27]

Figure 5.5: Envisaged UWB applications.

Currently, there are two competing UWB specifications. The following is a brief
overview of these two specifications: [17]

• OFDM-UWB
For widening the data over the spectrum, the WiMedia Alliance and Multi-
Band OFDM Alliance (MBOA) special interest groups use orthogonal frequency
division multiplexing (OFDM) that is used also in WLANs 802.11g and 802.11a.
MBOA comprises over 170 member companies, including for example Texas

46

Instruments, Intel, Samsung, Nokia, Philips, etc. The OFDM technique is
based on dividing the spectrum into 500 MHz subbands and using fast fre-
quency hopping.

• DS-UWB
Freescale Semiconductor (subsidiary of Motorola) defines another UWB ap-
proach, which uses the direct sequence (DS) technology for spreading the sig-
nal. DS-UWB uses a combination of a single-carrier spread-spectrum design
and wide coherent bandwidth. This approach provides low-fading, optimal
interference characteristics, inherent frequency diversity and precision rang-
ing capabilities. DS-UWB transmits data by pulses of energy generated at very
high rates.

Unfortunately, in early 2006 an industry working group announced that it would
disband because two competing factions could not agree on a single UWB standard.
Therefore consumers will once again face a technology war until one faction gains a
clear lead.

Wireless Universal Serial Bus (WUSB)

Wireless USB (WUSB) is a new wireless extension to Universal Serial Bus (USB)
intended to combine the speed and security of wired technology with the ease-of-
use of wireless technology. WUSB is based on the UWB radio efforts by MultiBand
OFDM Alliance and WiMedia Alliance.

Wireless USB is backward compatible with wired USB. WUSB uses a star topol-
ogy, which is shown in figure 5.6. The host initiates and commands data transmis-
sions by allocating time slots and data bandwidth among the devices connected to
it. These relationships are referred to as clusters. A Wireless USB host can connect
up to 127 devices.

Figure 5.6: Wireless USB topology.

47

The topology also supports multiple clusters in the same area. By exchanging
the data between clusters or devices, the second-level connection (i.e., a network)
between two hosts can be used (see figure 5.7). WUSB also supports so-called dual-
role devices, which can act as either hosts or clients. For example, a digital camera
could act as a client when connected to a computer, and as a host when transferring
pictures directly to a printer.

Figure 5.7: Combined Wireless USB clusters.

WUSB offers bandwidths of 480 Mbit/s at three meters and 110 Mbit/s at 10
meters. The maximum bandwidth is sufficient for example for managing multiple
High-Definition television (HDTV) streams while still having the capacity to sup-
port other hi-speed data streams. As the UWB evolves and future process technolo-
gies take shape, the bandwidth could exceed 1 Gbps. The power consumption of
WUSB is approximately 300 mW, but the target is to decrease it to 100 mW. It is
estimated that WUSB will be available in smartphones in 2008. [31]

5.4.4 Comparison and Summary of Wireless Standards

Figure 5.8 represents the spectrum of the most common wireless standards in terms
of two main functional characteristics – wireless radio range and data transmission
rate. Although there are several wireless standards, the depiction attests that the
standards are intended to differentiate from each other. Table 5.3 clarifies the char-
acteristics of the most common wireless standards. [4]

48

Fi
gu

re
5.

8:
W

ir
el

es
s

la
nd

sc
ap

e
w

it
h

th
e

m
os

tp
re

va
le

nt
st

an
da

rd
s.

[4
]

49

Z
ig

B
ee

B
lu

et
oo

th
W

LA
N

80
2.

11
b

W
LA

N
80

2.
11

g
U

W
B

St
an

da
rd

IE
EE

80
2.

15
.4

IE
EE

80
2.

15
.1

(V
1.

1)
IE

EE
80

2.
11

b
IE

EE
80

2.
11

g
IE

EE
80

2.
15

.3
a

M
ax

.d
at

a
ra

te
40

-2
50

kb
/s

1M
b/

s
11

M
b/

s
54

M
b/

s
11

0-
20

0M
b/

s

M
ax

.d
is

ta
nc

e
30

m
10

m
10

0m
10

0m
10

m

Fr
eq

ue
nc

y
86

8M
H

z,
91

5M
H

z,
2.

4G
H

z
2.

4G
H

z
2.

4G
H

z
2.

4G
H

z
3.

1-
10

.6
G

H
z

C
ha

nn
el

ba
nd

w
id

th
0.

3M
H

z,
0.

6M
H

z,
2M

H
z

1M
H

z
25

M
H

z
25

M
H

z
0.

5-
7.

5G
H

z

N
um

be
r

of
R

F
C

ha
nn

el
s

1,
10

,1
6

79
3

3
1-

15

M
od

ul
at

io
n

BP
SK

,O
Q

PS
K

G
FS

K
11

M
Ba

ud
Q

PS
K

(C
C

K
co

di
ng

)
O

FD
M

64
+

C
C

K
(l

eg
ac

y)
BP

SK
,Q

PS
K

Sp
re

ad
in

g
D

S-
SS

D
S-

FH
C

C
K

O
FD

M
M

ul
ti

ba
nd

Po
w

er
co

ns
um

pt
io

n
<

BT
BT

(4
0-

10
0m

W
)

∼
4B

T
∼

4B
T

∼
2-

3B
T

C
os

t
∼

0.
5B

T
BT

(∼
5$

)
∼

4B
T

∼
4B

T
∼

1-
2B

T

A
cr

on
ym

s
us

ed
:B

T
=

re
fe

re
nc

e
to

Bl
ue

to
ot

h

Ta
bl

e
5.

3:
Su

m
m

ar
y

of
ch

ar
ac

te
ri

st
ic

s
of

le
ad

in
g

w
ir

el
es

s
st

an
da

rd
s.

50

6 Conclusion

BlueCheese is a mobile peer-to-peer middleware, which provides interfaces and
functionalities for mobile peer-to-peer applications. From an application program-
mer’s point of view, BlueCheese is a server, which means that the applications have
to establish a session for obtaining services like data transmissions over Bluetooth
and location service.

The main component in case of measuring and analysing BlueCheese is Blue-
tooth. Mobile peer-to-peer communication requires an advantageous combination
of power consumption, availability, data transmission range and data transmission
rate.

Although Bluetooth has a low power consumption, the device search consumes
too much power. If the device discovery is performed all the time, a full battery is
exhausted within less than half of a day in all tested devices (Nokia N-Gage, Nokia
6600 and Nokia 6630). Because there are no low-powered low-level detectors for
finding other Bluetooth devices, the device search has to be done manually at some
intervals. If the interval is entended, the data spreading will be less efficient since
there will be fewer connections whereas if the interval is decreased, the power con-
sumption grows. Finding the optimal interval between device searches is very hard
since it cannot be known when there is a considerable number of other Bluetooth
devices around and especially devices with BlueCheese. There is a possibility of
exhausting the battery without having discovered any device.

Availability signifies for the latency time of establishing the connection. The
Bluetooth device discovery lasts approximately 10-20 seconds depending on how
many devices are around. This longish discovery time becomes critical when de-
vices are actively moving during the discovery. For example, if one device is moving
past a second device, the time required to perform the discovery may in fact exceed
the time during which the two devices are in range of one another. This could cause
inability of communication between devices even if the device discovery runs with-
out delays non-stop. The short range of Bluetooth with a lengthy discovery makes
Bluetooth an unsatisfactory solution in a Mobile Peer-to-Peer environment.

The device discovery in BlueCheese is performed by completing the procedure
all the way. To enhance the BlueCheese device and service discovery, a condensed
inquiry might be used as well, like for example halving the inquiry time. Then the

51

probability of finding devices decreases, but the availability increases. Also a spe-
cific connection handshake protocol could be useful, because there are two connec-
tions in the connection establishment procedure: service search (SDP) and the actual
data connection (L2CAP). Thus we might improve the time consuming connection
establishment by creating only one connection instead of two.

Symbian OS development is also a problem in the construction of BlueCheese.
For example, if two devices are within the achievable data transmission range, the
discovery fails if both devices discover concurrently because of the restriction of one
Bluetooth activity at a time. Therefore it is suitable to prevent one device from dis-
covering, if the other device is already discovering. This brings along the problem of
implementing that due to the dissimilarities of Symbian OS versions. In all Symbian
OS versions it is possible. However a solution that works in versions 6.1 and 7.0, is
not compatible with Symbian OS version 8.0 even if it is more recent. That is the
reason for the new Bluetooth Application Program Interface (BAPI), which defines
a whole new entity for using Bluetooth functionalities. Bluetooth API entails sev-
eral benefits but the API cannot be utilized due to the fact that it is not supported in
older versions. Therefore it is necessary to build a different version of the software
for different Symbian OS or utilize conditional compilation.

Bluetooth as a transmission technique is not suitable for Mobile Peer-to-Peer
communications on account of the reasons mentioned above. Bluetooth is very
suited for Client-Server based communication like for example multiplayer gaming
over Bluetooth or a stable point-to-point connection such as the wireless headset
providing hands-free audio. The previous chapter presented some point of views
regarding supportive actions or alternative prospects of enhancing BlueCheese or
any other similar Mobile Peer-to-Peer middlewares.

52

A BlueCheese Application Programming Interface

Application Programming Interface (API) of BlueCheese, containing all the classes
and functions, is described in this section. BcInterface.h is needed for including
BlueCheese interface in the project for providing classes, functions and enumera-
tions. BlueCheese.dll also has to be included in the project by adding it to the
mmp -file.

Class RBcSession

This class is used for communicating with BlueCheese: registering, unregistering,
closing connection, comparing locations, getting location and sending data.

RBcSession()

. Is the constructor of the class.

void ApplicationRegisterL(TBufC<16> aStringId, TUint

aMeetTimeout, MBcEventHandler* aHandler)

. Is used to register an application to BlueCheese.

void ApplicationUnregister()

. Is used when an application wants to unregister from BlueCheese.

void CloseConnection()

. Is used to close the connection when the application has exchanged data with the
connected device.

void CompareLocationsL(CLocationTable& aLocationTable)

. Is used to request locations comparison.

void GetLocation()

. Is used to get the current location.

void Send(TDesC8& aData, TBcSendingMode aSendingMode)

. Is used to send the data to the connected device.

53

Class MBcEventHandler

This class is used for handling the events from BlueCheese.

MBcEventHandler()

. Is the constructor of the class.

void ReceiveEvent(TEvent* aEvent)

. Is used to receive a pointer to TEvent object. This abstract function has to be
overridden in the derived class.

Class TEvent

This class describes the events of BlueCheese.

TEvent()

. Is the constructor of the class.

TEvent(TBcEventType aType, TAny* aData)

. Is the constructor of the class for creating a new event containing the type and the
data defined in the parameters.

TAny* Data()

. Is used to get a pointer to the data.

void ExternalizeL(RWriteStream& aStream)

. Is used to write TEvent object to the stream.

void InternalizeL(RReadStream& aStream)

. Is used to read TEvent object from the stream.

TBcEventType Type()

. Is used to get the type of the event (Types are: EBcApplicationRegistered,
EBcConnectionClosed, EBcConnectionOpened, EBcCurrentLocation,

EBcErrorRegister, EBcErrorSend, EBcLocationComparison,

EBcReceiveData, EBcUnknown).

54

Class CLocationTable

This class is used to store location information and comparison results.

CLocationTable()

. Is the constructor of the class.

C̃LocationTable()

. Is the destructor of the class.

void AddLocation(TLocation* aLocation)

. Is used to add TLocation pointer to CLocationTable.

TInt Count()

. Is used to count how many TLocation objects are in CLocationTable.

void ExternalizeL(RWriteStream& aStream)

. Is used to write CLocationTable object to the stream.

void InternalizeL(RReadStream& aStream)

. Is used to read CLocationTable object from the stream.

TLocation& operator[](TInt aIndex)

. Is used to get a reference to one item of CLocationTable.

Class TLocation

This class is used to store location information.

TLocation()

. Is the constructor of the class.

void TLocation(TUint aNetworkId, TUint aLocalAreaId, TUint

aCellId, TDistance aDistance = EUnknown)

. Is the constructor of the class. It is used by the application or the location service
to create an instance.

void ExternalizeL(RWriteStream& aStream)

. Is used to write TLocation object to the stream.

55

TUint GetCellId() const

. Is used to get the cell id of TLocation object.

TUint GetDistance() const

. Is used to get the distance (Values are: EFarAway, EQuiteClose,

EVeryClose, EUnknown) of TLocation object.

TUint GetLocalAreaId() const

. Is used to get the local area id of TLocation object.

TUint GetNetworkId() const

. Is used to get the network id of TLocation object.

void InternalizeL(RReadStream& aStream)

. Is used to read TLocation object from the stream.

void SetDistance(TDistance aDistance)

. Is used to set the distance to TLocation.

void SetLocation(TUint aNetworkId, TUint aLocalAreaId, TUint

aCellId)

. Is used to set the location information to TLocation.

56

References

[1] O. Alanen, K. Haukimäki, T. Juonoja and P. Rönkkö, MoPeDi Project - Software
Design, Jyväskylän yliopisto, 2004.

[2] O. Alanen, K. Haukimäki, T. Juonoja and P. Rönkkö, MoPeDi Project - Specifi-
cation, Jyväskylän yliopisto, 2004.

[3] J. Al-Jaroodi, N. Mohamed and H. Jiang, Distributed Systems Middleware Archi-
tecture from a Software Engineering Perspective, Information Reuse and Integra-
tion (IRI) - IEEE International Conference, 2003.

[4] N. Baker, ZigBee and Bluetooth strengths and weaknesses for industrial applica-
tions, IEEE Computing & Control Engineering, Volume 16 (April-May), Issue
2, 2005.

[5] Bluetooth SIG, The Official Bluetooth Website, available in www-format <URL:
http://www.bluetooth.com>, 2005.

[6] L. Burness, D. Higgins, A. Sago and P. Thorpe, Wireless LANs – Present and
Future, BT Technology Journal - Volume 21, 2003.

[7] Cheese Factory, Cheese Factory, available in www-format <URL: http://
tisu.it.jyu.fi/cheesefactory>, 2006.

[8] G. Coulouris J. Dollimore and T. Kindberg, Distributed Systems: Concepts and
Design, 3rd edition, Addison-Wesley, 2001.

[9] L. Dao-Hui, L. Gang and G. Bao-Xin, The Radio Networking of Bluetooth, 3rd In-
ternational Conference on Microwave and Millimeter Wave Technology Pro-
ceedings on 17-19 August, 2002.

[10] W. Emmerich, Software Engineering and Middleware: A Roadmap, Proceedings
of the Conference on The Future of Software Engineering, 2000.

[11] C. Evans-Bughe, Bzzzz zzz [ZigBee wireless standard], IEEE Review, Volume 49,
Issue 3, 2003.

57

[12] E. Ferro and F. Potortì, Bluetooth and Wi-Fi Wireless Protocols: A Survey and a
Comparison, IEEE Wireless Communications, Volume 12, Issue 1, 2005.

[13] X. Guang-Tao, L. Ming-Lu, D. Qian-Ni and Y. Jin-Yuan, Stable group model in
mobile peer-to-peer media streaming system, Mobile Ad-hoc and Sensor Systems
IEEE International Conference on 25-27 October, 2004.

[14] J.C. Haartsen, Bluetooth: A new radio interface providing ubiquitous connectiv-
ity, 51st Vehicular Technology Conference Proceedings (VTC-Spring Tokyo) -
IEEE Volume 1, 2000.

[15] K. Haukimäki, Mobiilien vertaisverkkojen väliohjelmistot, Bachelor’s Thesis,
University of Jyväskylä, available in www-format <URL:
http://tisu.it.jyu.fi/cheesefactory/documents/Mobiilit

VertaisverkkoValiohjelmistotKandiTutkielmaHaukimaki.pdf>,
2004.

[16] P.S. Henry and H. Luo, WiFi: What’s Next?, IEEE Communications Magazine
- Volume 40, 2002.

[17] Institute of Electrical and Electronics Engineers, Welcome to the IEEE, available
in www-format <URL: http://www.ieee.org>, 2005.

[18] M.J. Jipping, Symbian OS, Communications Programming, John Wiley & Sons,
Ltd, 2002.

[19] P. Jäppinen, Wireless Services Engineering - Personal Area Networking, Lec-
ture Notes, available in www-format <URL: http://www2.lut.fi/

~pjappine/Lectures/WSE/PAN.pdf>, Lappeenranta University of Tech-
nology, 2005.

[20] A. Kotanen, M. Hännikäinen, H. Leppäkoski and T.D. Hämäläinen, Position-
ing with IEEE 802.11b Wireless LAN, IEEE, 2003.

[21] J. Mitchell and A.J. Sánchez-Ruíz, An Architectural Pattern for Adaptable Mid-
dleware Infrastructure, Information Reuse and Integration (IRI) - IEEE Interna-
tional Conference on 27-29 October, 2003.

[22] Nokia, Nokia - Nokia Sensor, available in www-format <URL: http://

europe.nokia.com/nokia/0,1522,,00.html?orig=/sensor>, 2006.

58

[23] I. Oppermann, The Role of UWB in 4G, Wireless Personal Communications: An
International Journal, Volume 29, Issue 1-2 (April), 2004.

[24] Z. Pei, L. Weidong, W. Jing and W. Youzhen, Bluetooth – The Fastest Developing
Wireless Technology, Communication Technology Proceedings - Volume 21 -
International Conference on 21-25 August, 2000.

[25] P. Persson and Y. Young, Nokia Sensor: From Research to Product, available
in www-format <URL: http://www.perpersson.net/Publications/
Sensor_DUX2005.pdf>, Conference on Designing for User eXperience
(DUX), San Francisco, 2005.

[26] R. Poole, What exactly is . . . ZigBee?, IEEE Communications Engineer, Volume
2, Issue 4 (August-September), 2004.

[27] D. Porcino and W. Hirt, Ultra-wideband radio technology: potential and challenges
ahead, IEEE Communications Magazine, Volume 41, Issue 7 (July), 2003.

[28] R. Schollmeier, A Definition of Peer-to-Peer Networking for the Classification of
Peer-to-Peer Architectures and Applications, Peer-to-Peer Computing - First In-
ternational Conference on 27-29 August, 2002.

[29] R. Steinmetz and K. Wehrle (Eds.), Peer-to-Peer Systems and Applications, Lec-
ture Notes in Computer Science, Volume 3485, pp. 419-433, 2005.

[30] R. Shorey and B.A. Miller, The Bluetooth Technology: Merits and Limitations, Per-
sonal Wireless Communications - IEEE International Conference on 17-20 De-
cember, 2000.

[31] USB.org, USB.org, available in www-format <URL: http://www.usb.org>,
2006.

[32] O. Volovikov, Mobile Encounter Networks Application: A Gasoline Price Com-
parison System, Master’s Thesis, University of Jyväskylä, available in www-
format <URL: http://tisu.it.jyu.fi/cheesefactory/documents/
gpcs_final.pdf>, 2006.

[33] O. Volovikov, M. Vapa, M. Weber, N. Kotilainen and J. Vuori, Mobile Peer-to-
Peer Encounter Networks and Their Applications, University of Jyväskylä, 2005.

[34] Wikipedia, Wikipedia, the Free Encyclopedia, available in www-format <URL:
http://www.wikipedia.org>, 2006.

59

[35] L. Yang and G.B. Giannakis, Ultra-wideband communications: an idea whose time
has come, IEEE Signal Processing Magazine, Volume 21, Issue 6 (November),
2004.

[36] ZigBee Alliance, ZigBee Alliance – Wireless Control That Simply Works, available
in www-format <URL: http://www.zigbee.org>, 2005.

60

