
Chedar: Peer-to-Peer Middleware

Annemari Auvinen, Mikko Vapa, Matthieu Weber, Niko Kotilainen and Jarkko Vuori

Department of Mathematical Information Technology
University of Jyväskylä

P.O.Box 35 (Agora), 40014 University of Jyväskylä, Finland
{annauvi, mikvapa, mweber, npkotila, jarkko.vuori}@jyu.fi

Abstract

In this paper we present a new peer-to-peer (P2P)
middleware called CHEap Distributed ARchitecture
(Chedar). Chedar is totally decentralized and can be
used as a basis for P2P applications. Chedar tries
to continuously optimize its overlay network topology
for maximum performance. Currently Chedar com-
bines four different topology management algorithms
and provides functionality to monitor how the peer-to-
peer network is self-organizing. It also contains basic
search algorithms for P2P resource discovery. Chedar
has been used for building a data fusion prototype and
a P2PDisCo distributed computing application, which
provides an interface for distributing the computation
of Java applications. To allow Chedar to be used in
mobile devices, the Mobile Chedar middleware has also
been developed.

1 Introduction

Peer-to-peer technologies have received a lot of pub-
licity lately mainly because of Napster and other peer-
to-peer systems mostly developed for distributing mu-
sic and movies in the Internet. A peer-to-peer network
is also well suited for sharing other resources than files,
for example CPU time and storage space. Every node
in a P2P network may provide resources to other nodes
and consume resources the other nodes are providing,
i.e. a node may serve both as a server and a client.
Therefore there is no need for a central server which
might become the bottleneck of the network or which
failure will paralyze the whole network. Also the data
traffic is more evenly distributed in the P2P network

This work was supported in part by the Agora Center InBCT

project.

than in the centralized networks where central node’s
data traffic might be very large.

Gnutella [14], published in 2000, is a decentralized
pure peer-to-peer protocol [15]. Gnutella servents use
TCP connections for communication and the Breadth
First Search (BFS) algorithm for searching resources.
When a node wants to join the Gnutella network it
must first find one node in the network to which to
establish a connection. That node can be found for
example from a web page containing a list of nodes. In
Gnutella, a node usually has some pre-defined amount
of connections. To find new neighbors a Gnutella node
uses ping messages. A ping message is broadcasted in
the network and nodes reply to it with pong messages.
The node stores information about the active connec-
tions it has so it can try to connect to those when
joining the network after disconnecting.

In Gnutella the search queries are broadcasted in the
network. The querier sends the query message to its
neighbors, which forward the query to their neighbors
except the node from where the query arrived. The
amount of hops the query travels can be limited by
setting a time-to-live (TTL) value. Every time a node
forwards the query, it decrements the value of the TTL
by one. When the value of the TTL becomes zero the
node drops the message. If a node owns the queried
resource it sends a reply to the querier using the same
route as the query came from.

Chedar differs from Gnutella in some ways. Chedar
is a middleware, i.e. it offers an API for P2P applica-
tions. It contains new kinds of topology management
algorithms by which the overlay topology on top of the
physical network is self-organized. Those algorithms
use only the local information the nodes have on their
neighbors. The purpose of the algorithms is to create
a network which is scalable and fault-tolerant. Chedar
also has four other search algorithms implemented, in
addition to the BFS that Gnutella uses. Chedar also

guarantees that a resource reply message can be for-
warded to the querier if it still exists in the network.
Chedar uses an XML-based, structured resource de-
scription and the XPath language for matching the
query keywords with its resources.

This paper is organized as follows. We describe
Chedar in Section 2 and its structure in Section 3.
The messages Chedar uses are described in Section 4.
The algorithms used for managing the topology of the
Chedar network are presented in Section 5 and the pa-
per is concluded in Section 6.

2 Chedar

We have developed the Chedar system for resource
sharing and distribution. Chedar is a pure peer-to-peer
middleware implemented using the Java programming
language. Any application which uses the API and im-
plements the callback functions required by the API
may use Chedar and run on it. Peers, i.e. nodes in the
network, communicate directly with each other using
TCP connections. Chedar is developed to work in a dy-
namic environment where the nodes may join or leave
the network whenever they want without causing sig-
nificant problems to the applications running on top of
Chedar. Because there are no central points in the net-
work, Chedar is fault-tolerant and scalable. In case of
link failures the topology management algorithms en-
sure that new peers will be contacted and the network
stays connected.

Chedar can be used to distribute different kinds of
resources to other nodes in the Chedar network. Dis-
tributed resources can be for example files, CPU time
or storage space. Every node stores information about
the resources it provides in XML format. When the
node receives a query about some resource it checks
by using the XPath expression whether it owns the re-
source.

In Chedar a neighbor’s goodness is defined based on
the resource replies the node receives from the neighbor
to the requests the node has sent. The more the neigh-
bor offers requested resources, the more important it is
for the node. The amount of replies the neighbor has
relayed to the node also affects it’s goodness value. The
overlay topology and the traffic in the Chedar network
is managed by the Overtaking and Overload Estima-
tion algorithms which use neighbor’s goodness value as
a measure for selecting which of the connections should
be dropped and where to connect. Also Chedar al-
ways tries to route the resource reply to the initiator
of the request. In Chedar it is possible to use multiple
search algorithms, unlike in Gnutella which only uses
the broadcasting search algorithm.

In our research project [4] Chedar has been used for
distributed computing [9] and data fusion [13] and ex-
tended also to mobile devices [10]. Peer-to-Peer Dis-
tributed Computing (P2PDisCo) software was built
on top of Chedar to speed up the training of neural
networks with evolutionary computing. In the Decen-
tralized Data Fusion System (DDFS) application each
sensor node is one Chedar node. DDFS can be used
to track targets based on the sensor measurement of
their coordinates. Mobile Chedar is an extension to
the Chedar peer-to-peer network for mobile peer-to-
peer applications and has been implemented using Java
2 Micro Edition. We have also developed P2PStudio
[8] monitoring application for the Chedar network to
study the performance of search algorithms and the
self-organizing behavior of the topology management
algorithms.

3 Structure of Chedar

Chedar consists of five main components which
are Connections, ConnectionManager, Propagation-
Engine, TopologyManager and ChedarClient. These
components are illustrated in Figure 1.

3.1 Connections

The Connections include local information used by
the topology management algorithms about the node’s
neighbors. Each neighbor is one connection object.
Chedar keeps information about active connections and
history data about the earlier connections in XML
trees. Searches can be made to the XML tree using
an XPath expression. History data also contains infor-
mation about the nodes which the peer has found out
from its neighbors. The nodes save the IP addresses
and the TCP ports of the neighbors, the types of re-
sources those provide and hit values per provided re-
source types. Hit values are described later in the next
paragraph. Chedar saves also the time when the con-
nection last replied, when the connection request has
been sent to the connection and whether the request

ChedarClient

ConnectionManager

PropagationEngineTopologyManager Connections

Figure 1. Main components of Chedar.

succeeded or not. Relayed hits and the number of the
connection’s neighbors is stored about active connec-
tions.

Every connection has three types of hit values in
Chedar. First one, called hit value, is increased by
one every time the node gets a resource reply from
its neighbor. Second one is called actual hits and is
increased when the node uses a resource the neighbor
provides. Relayed hits values of the connection include
the neighbor’s neighbor nodes and the amount of the
reply messages those have sent to the node through the
neighbor.

3.2 ConnectionManager

The ConnectionManager manages the active con-
nections and the history data by adding connections
or removing connections according to the Topology-
Manager’s requests. The ConnectionManager keeps a
cache about the information of forwarded messages and
handles all arriving messages and passes them to the
classes which have informed wanting that type of mes-
sages. The ConnectionManager has also a traffic meter
which measures the size of the resource messages going
through the node in a given time period. The traffic
meter is used by the Overload Estimation Algorithm.

3.3 TopologyManager

The TopologyManager selects the connections to es-
tablish or remove and the nodes to overtake by using
the algorithms described in the Section 5. It handles
ConnectionRequest and ConnectionReply messages,
NeighborListRequest and NeighborListReply messages
and ServiceListRequest and ServiceListReply messages
which are described in the Section 4.

3.4 PropagationEngine

The PropagationEngine handles the resource mes-
sages. The application running on top of Chedar can
select any search algorithm that is implemented in
Chedar. Currently five different resource discovery
algorithms have been implemented: BFS [12], Ran-
dom Walk [11], Highest Degree Search [1, 6] and Neu-
roSearch [16]. Some of the algorithms are reviewed
in [16]. The PropagationEngine passes the received
resource request or reply message to the search algo-
rithm specified in the message. The algorithm makes
the decision where to forward the message and creates
a reply message when needed. The algorithm returns
to the PropagationEngine the forwarded message and
a list of connections where to forward the message.

3.5 ChedarClient

The ChedarClient works as an API for Chedar. The
ChedarClient provides methods for setting and getting
the values of the parameters used in the algorithms.
Resources can be set with the ChedarClient and it
propagates events about received and sent messages
and overtakings to the application. The ChedarClient
also provides methods for establishing a connection to a
certain node and for creating a resource request. Table
1 shows the methods that are accessible in the Chedar-
Client for the applications running on top of Chedar.

By implementing Chedar’s monitoring interface,
the iMonitor, the application may get the follow-
ing events: resourceQuerySentEvent, messageForward-
edEvent, messageDiscardedEvent, resourceReplySen-
tEvent, resourceReplyReceivedEvent, overtakingEvent,
connectionRequestedEvent and connectionStatusEvent.

4 Messages

There are three types of messages used for the topol-
ogy management in Chedar. When a node wants to
establish a new connection to another node it sends a
ConnectionRequest message to it. The requested node
sends back a ConnectionReply message which includes
the information whether it accepts the request or not.

With a NeighborListRequest message the node can
query a connection’s neighbors, i.e neighbor’s neigh-
bors. The sender puts its own neighbors’ IDs into the
message. The node replies to the request by sending
back a NeighborListReply message which includes the
neighbors’ IDs. The nodes save the neighbors’ IDs to
the history data.

A node can query the resource types its neighbor
provides, e.g. file or computing time, by sending to
a connection a ServiceListRequest message which is
replied by a ServiceListReply message. The request
message includes the resource types the sender provides
and the reply message includes the replier’s resource
types.

Resources are searched with a ResourceRequest mes-
sage. An application needing a resource starts a query
using a resource discovery algorithm it wants. When
the message arrives to a node which has the requested
resource, it handles the message according to the algo-
rithm and sends the reply message back to the initiator
of the request message using the following method.

Chedar tries to guarantee that the ResourceReply
message is forwarded to the initiator of the request mes-
sage by using a simple method. Every node keeps in-
formation about ResourceRequest messages it has for-
warded. The nodes save the ID of the message and the

startChedar() Starts a Chedar node.
startConnecting() The node starts estab-

lishing connections.
setMonitor(iMonitor
monitor)

Sets a monitoring appli-
cation for events.

pingMessage() Checks if a Chedar node
is still alive.

connect(String
password)

Connects to the node.
Returns true if the pass-
word is correct.

getMyID() Returns node’s ID.
getNeighbors() Returns neighbors’ IDs.
setResources(Node
resource)

Sets a resource node to
the XML tree.

unsetResource(String
xpath)

Removes corresponding
resource from the XML
tree using an XPath ex-
pression.

listResources() Returns a list of re-
sources the node has.

createResourceQuery(
String query, String
algorithm, int ttl)

Creates a resource re-
quest message where the
query is the searched re-
source as XPath, the
algorithm is the used
search algorithm and the
ttl is a time-to-live value.
Returns the id of the cre-
ated message.

stopMessage(String id) Stops forwarding the
message with a given id.

setTrafficLimit(int
limit)

Sets a value for the traf-
fic limit.

getTrafficLimit() Returns the value of the
traffic limit.

getTrafficMeter() Returns the value of the
traffic meter.

resetTrafficMeter() Sets the value of the traf-
fic meter to zero.

forceConnection(String
id)

Establishes a connection
to the node specified
with the id.

forceDisconnection(String
id)

Disconnects the neigh-
bor specified with id.

closeAllConnections() Disconnects all node’s
connections.

Table 1. Methods accessible for applications
running on top of Chedar.

IDs of the two previous nodes of the path the message
arrived from. The reply message is forwarded to the
initiator of the request message using the same path as
the request came from, i.e. the reply message is sent
to the connection where the request arrived from. This
is a common way to route the replies in P2P networks
because it needs only information about the previous
node. In Chedar there is also other ways if the for-
warding fails. If the connection to the neighbor is not
available anymore, for example the neighbor has left
the network, the node tries to establish a new con-
nection to the second next node on the return path,
i.e. the second previous node on the query path and
sends the message there. If this does not work either,
finally the node tries to establish a new connection to
the initiator of the query and sends the reply message
directly to it. Establishing always a direct connection
to the initiator of the query would require establishing
a new TCP connection, which is not always possible,
e.g. in the presence of firewalls. Also keeping statis-
tics of which nodes have relayed replies would not be
possible.

5 Topology Management Algorithms

Chedar contains four algorithms for managing the
topology: Node Selection for adding neighbors, Node
Removal for removing neighbors, Overload Estimation
for limiting the node’s traffic and Overtaking for mov-
ing in the network. The algorithms have been further
developed and tested in the P2PRealm simulator [7]
and the behavior of the algorithms is analysed in [3].

5.1 Node Selection Algorithm

The initial list of neighbors can be obtained manu-
ally by out-of-band methods or automatically by using
advertisement systems [17] or centralized entry point
directories [5]. This has not been implemented in
Chedar, but instead it has been left to the applica-
tion running on top of Chedar. The Node Selection
Algorithm handles only the case when a Chedar node
already knows some nodes in the network.

When the node joins the network again it tries to
establish the connections it had before leaving the net-
work, i.e. connections saved in the active connections.
In the best case it manages to establish all connections
it had earlier. If the node does not manage to establish
any of those connections or it needs a new connection
for other reasons, it searches the next one from the
history as shown in Algorithm 5.1.

First it searches connections which have hit values
and tries to create a connection to one of those.

Because the node does not want to create a connection
to the same node it has just dropped it searches only
the connections which have not been requested in a
given time. If the node did not succeed in establishing
a new connection, it next searches connections based
only on the time of the last request, i.e. the node has
not tried to create a connection to those in a given
time or at all (lacking requested information). If the
node still did not successfully create a connection, it
searches connections without information for hit values
or request time. If the node does not have neighbors
then the last way to search for a new connection is
to try the connections in the history which have hit
values. Then the node may select again a neighbor
which it has just dropped.

Algorithm 5.1 (NodeSelectionAlgorithm)
Input: Connections his in node’s history
H = {h1, ..., hm}, time sets a limit for the time
which older the previous connection request must be
and neighbors is the number of node’s neighbors.
Output: Establishes a new connection
hitsNeeded = true
timeNeeded = true
C = SearchConnections(hitsNeeded, timeNeeded, time,
H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

hitsNeeded = false
timeNeeded = true
C = SearchConnections(hitsNeeded, timeNeeded, time,
H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

hitsNeeded = false
timeNeeded = false
C = SearchConnections(hitsNeeded, timeNeeded, time,
H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

if neighbors == 0 then do

hitsNeeded = true
timeNeeded = false
C = SearchConnections(hitsNeeded, timeNeeded,

time, H)
for i=1 to | C | do

if EstablishConnection(ci) then do

return ci

end if

end for

end if

The function SearchConnections(hitsNeeded, time-
Needed, time, H) returns those connections C =
{c1, ..., cn} ⊆ H which meet the criteria defined in the
parameters. If the value of the parameter hitsNeeded
is true, then the function only returns the connections
which have hit values. If hitsNeeded is false the func-
tion returns the connections which do not have hit val-
ues. If the value of the parameter timeNeeded is true,
then the function only returns the connections which
have not been requested in the time defined in the pa-
rameter time. The function EstablishConnection re-
turns true, if the connection was established success-
fully.

5.2 Node Removal Algorithm

When a node wants to remove a connection it se-
lects the worst neighbor among the neighbors it cur-
rently has. The worst neighbor has the smallest good-
ness value. The goodness is the sum of the neighbor
connection’s hit values and relayed hits.

Goodness = hits + relayedhits (1)

The Node Removal Algorithm (Algorithm 5.2) is
described as follows.

Algorithm 5.2 (NodeRemovalAlgorithm)
Input: Connections C = {c1, ..., cn}, where cis are
node’s neighbor connections.
Output: Removes the worst connection.
c = null
lowestGoodnessV alue = ∞
for i=1 to | C | do

g = Hits(ci)+ RelayedHitsSum(ci)
if g < lowestGoodnessV alue then do

c = ci

lowestGoodnessV alue = g

end if

end for

if c 6= null then do

DisconnectConnection(c)
end if

The function Hits(connection) returns the con-
nection’s hit values and the function Relayed-
HitsSum(connection) returns the sum of relayed hits

of the connection’s neighbors. The method Disconnect-
Connection(connection) removes the connection to the
neighbor.

5.3 Overload Estimation Algorithm

There is no predefined number for the connections
the node should maintain. Thus the connections are
added and dropped based on the amount of traffic
going through the node. The Overload Estimation
Algorithm compares the traffic meter value calculated
in the ConnectionManager to the predefined traffic
limit values. There are upper and lower traffic limits
which set the range where the traffic amount should
be. If the traffic is more than the predefined upper
traffic limit, one connection is dropped by using
Algorithm 5.2. If the traffic is less than the lower
traffic limit it tries to add a new connection using the
Algorithm 5.1. At the end, the algorithm resets the
traffic meter by setting its value to zero.

Algorithm 5.3 (OverloadEstimationAlgorithm)
Input: Connections C = {c1, ..., cn}, where cis are
node’s neighbor connections, value of the traffic meter
meter in kilobytes, value of the upper traffic limit
upperLimit in kilobytes and value of the lower traffic
limit lowerLimit in kilobytes.
Output: Establishes a new connection or removes
one connection.
overloadFlag = false
if meter > upperLimit ∧ | C |> 1 then do

overloadFlag = true
NodeRemovalAlgorithm(C)

end if

if meter < lowerLimit then do

NodeSelectionAlgorithm()
end if

meter = 0
The variable overloadFlag is true if the traffic

amount is greater than the traffic limit. In that sit-
uation the node does not accept any new connections.

5.4 Overtaking Algorithm

The Overtaking Algorithm is used to optimize the
topology. The purpose of the algorithm is that the
node moves in the network closer to the nodes which
provide it a lot of replies by overtaking the current
connection. The node does not directly connect to a
neighbor of the resource providing node but only closer
step by step and that way makes sure that it does not
lose good nodes on the path.

The idea is that when a reply message arrives to the

querier it updates the hit value of the replier node and
updates the local information concerning the relayed
hits of the neighbor of the connection from which the
node got the reply message. Then if the connection’s
hit value is bigger than 1, i.e. the node has got more
than one message from the neighbor, the node checks
whether the connection has a neighbor node whose pro-
portion of the sum of all neighbors’ relayed hits and
connection’s hits is more than the defined overtaking
percent. For example if the overtaking percent is 60%
it means that if there is the neighbor of the connection
which has forwarded over 60% of all reply messages the
node has received from the connection then the node
establishes a new connection to that node and drops
the current connection.

The advantages of the algorithm are that the
distances of the nodes which use others’ resources are
shorter than in randomly connected networks. The
algorithm creates clusters gathering close to its center
the nodes which provide a lot of resources used by
other nodes.[2, 3]

Algorithm 5.4 (OvertakingAlgorithm)
Input: Overtaking percent overtakingPercent,
node’s neighbor connection c, c’s neighbors
N = {n1, ..., nn} and c’s hit value hitV alue.
Output: Node has overtaken a neighbor if some
neighbor’s neighbor is better for the node.
if hitV alue > 1 then do

sum = 0.0
biggest = overtakingPercent/100.0
bestNeighbor = null
sum += Hits(c) + RelayedHitsSum(c)
for i=1 to | N | do

hitValue = RelayedHits(ni)
proportion = hitValue/sum
if proportion ≥ biggest then do

biggest = proportion
bestNeighbor = ni

end if

end for

if bestNeighbor 6= null then do

if EstablishConnection(bestNeighbor) then do

DisconnectConnection(c)
end if

end if

end if

The function Hits(connection) returns the
connection’s hit values, the function Relayed-
HitsSum(connection) returns the sum of the relayed
hits of the connection’s neighbors and the function
RelayedHits(neighbor) returns the relayed hits of the
neighbor. The function EstablishConnection returns

true, if establishing a connection succeeded. The
method DisconnectConnection(connection) removes
the connection to the neighbor.

6 Conclusion

The Chedar peer-to-peer middleware provides a de-
centralized architecture for P2P applications. The
topology of the Chedar network is self-organized by the
topology management algorithms and different search
algorithms can be used for discovering the resources.
Future work of Chedar includes further development of
the topology management algorithms and NeuroSearch
resource discovery algorithm to optimize the search
process as well as the mobile peer-to-peer application
development on top of Mobile Chedar.

References

[1] L. A. Adamic, R. M. Lukose, and B. A. Huberman.
Local search in unstructured networks. In Handbook
of Graphs and Networks: From the Genome to the
Internet, pages 295–317. Wiley-VCH, 2003.

[2] A. Auvinen. Topology management algorithms in
chedar peer-to-peer platform. Master’s thesis, Uni-
versity of Jyväskylä, February 2004.

[3] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and
J. Vuori. New topology management algorithms for
P2P networks. Unpublished.

[4] Cheese factory. http://tisu.it.jyu.fi/cheesefactory.
[5] Gnutellahosts. http://www.gnutellahosts.com/.
[6] B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong.

Path finding strategies in scale-free networks. Physical
Review E, 65, 2002.

[7] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, and
J. Vuori. P2PRealm - peer-to-peer network simulator.
Unpublished.

[8] N. Kotilainen, M. Vapa, A. Auvinen, M. Weber, and
J. Vuori. Peer-to-peer studio - monitoring, control-
ling and visualisation tool for peer-to-peer networks
research. Unpublished.

[9] N. Kotilainen, M. Vapa, M. Weber, J. Töyrylä, and
J. Vuori. P2PDisCo - java distributed computing for
workstations using chedar peer-to-peer middleware. In
Proceedings of the 19th IEEE International Parallel
& Distributed Processing Symposium (IPDPS 2005),
2005.

[10] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori.
Mobile chedar - a peer-to-peer middleware for mo-
bile devices. In Proceedings of the Second Interna-
tional Workshop on Mobile Peer-to-Peer Computing
(MP2P05), pages 86–90. IEEE Press, 2005.

[11] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks.
In Proceedings of the 16th International Conference on
Supercomputing, pages 84–95. ACM Press, 2002.

[12] N. A. Lynch. Distributed Algorithms. Morgan Kauff-
mann Publishers, 1996.

[13] S. Nazarko. Evaluation of the data fusion methods
using kalman filtering and transferable belief model.
Master’s thesis, University of Jyväskylä, November
2002.

[14] A. Oram, editor. Harnessing the Power of Disruptive
Technologies. O’Reilly, Sebastopol, CA, 2001.

[15] R. Schollmeier. A definition of peer-to-peer net-
working for the classification of peer-to-peer archi-
tectures and applications. In Proceedings of First
International Conference on Peer-to-Peer Computing
(P2P’01), pages 101–102, 2001.

[16] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen,
and J. Vuori. Resource discovery in P2P networks
using evolutionary neural networks. In International
Conference on Advances in Intelligent Systems The-
ory and Applications (AISTA 2004), November 2004.

[17] M. Weber, J. Vuori, and M. Vapa. Advertising peer-
to-peer networks over the internet. Radiotekhnika,
133:162–170, 2003.

