
Oleksiy Volovikov

Mobile Encounter Networks Application:

A Gasoline Price Comparison System

Master's Thesis

in Information Technology

24th May 2006

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Copyright c© 2006 Oleksiy Volovikov

All rights reserved.

Jyväskylän yliopisto

Jyväskylä 2006

Abstract

Volovikov, Oleksiy

Mobile Encounter Networks Application: A Gasoline Price Comparison System / Olek-

siy Volovikov

Jyväskylä: University of Jyväskylä, 2006

69 p.

Master's Thesis

This thesis describes a mobile encounter networks application, called Gasoline Price

Comparison System (GPCS), which delivers the newest gasoline prices to mobile users

using mobile encounter information di�usion. Other existing and potential applications

of mobile encounter networks are described as well.

Mobile encounter networks emerge when mobile devices come across each other

and form a temporary connection between them using a common short-range radio

technology. Local information exchanges between mobile devices result in a broadcast

di�usion of information to other users of the network with a delay.

Keywords: Mobile Applications, Mobile Encounter Networks, Information Di�usion,

BlueCheese, Symbian OS, Bluetooth

Tiivistelmä

Volovikov, Oleksiy

Mobiilien kohtaamisverkkojen sovellus: Polttoaineen hintavertailujärjestelmä / Oleksiy

Volovikov

Jyväskylä: Jyväskylän yliopisto, 2006

69 s.

pro gradu -tutkielma

Tässä tutkielmassa kuvataan mobiileja kohtaamisverkkoja varten suunniteltu sovel-

lus nimeltä Gasoline Price Comparison System (GPCS, Polttoaineen hintavertailujär-

jestelmä), joka toimittaa uusimmat polttoaineiden hinnat mobiililaitteiden käyttäjille

mobiilien kohtaamisten mahdollistaman informaation leviämisen avulla. Työssä esitel-

lään myös muita jo toteutettuja ja mahdollisia sovelluksia mobiileille kohtaamisverkoille.

Mobiileja kohtaamisverkkoja syntyy, kun mobiililaitteet kohtaavat toisensa ja muo-

dostavat väliaikaisen yhteyden käyttämällä lyhyen kantaman radiotekniikkaa. Mobi-

ililaitteiden välisten paikallisten tiedonsiirtojen ansiosta tieto leviää yleislähetyksenä

muille verkon käyttäjille viiveellä.

Avainsanat: Mobiilisovellukset, mobiilit kohtaamisverkot, informaation leviäminen,

BlueCheese, Symbian OS, Bluetooth

Preface

This Master's thesis was done at the Department of Mathematical Information Tech-

nology, University of Jyväskylä, Finland. The thesis was inspired by professor Jarkko

Vuori's idea about Gasoline Price Comparison System (GPCS). GPCS lets drivers'

mobile devices automatically exchange information about gasoline while they are in

immediate proximity to each other without going through a central server. These in-

formation exchanges are free of charge since there is no central server in the system

and using a common short-range wireless technology the transmission does not cost to

the users. Having possessed such information, the driver has the possibility to choose

an appropriate place to refuel in the future.

I would like to thank Jarkko Vuori for the original idea, my supervisors Mikko Vapa

and Matthieu Weber for their valuable advices and comments during the creation of

this thesis. I express my gratitude to the head of the exchange program Vagan Terziyan

and the international coordinator Helen Kaykova for their help and support during my

stay in Finland. Finally I wish to thank the team of Bitcomp Oy and especially Jarmo

Oittinen and Ville-Pekka Vahteala for the opportunity to learn and work with them

for over a year and a half.

i

Glossary

Avkon Series 60 extensions and modi�cations to Uikon and other parts of

the Symbian OS Application Framework [8].

BlueCheese A middleware for Symbian OS that facilitates communication be-

tween applications in mobile encounter networks.

Bluetooth A global de facto standard for wireless connectivity. The technol-

ogy is based on a low-cost, short-range radio link that operates

in a globally available ISM band at 2.4 GHz, making Bluetooth

usable worldwide [4].

DSA (Data Sharing Applications) are data sharing mobile computing

systems used to share their memory space and data to achieve some

common bene�ts with the aid of data exchange between radio-

equipped mobile devices.

GPCS (Gasoline Price Comparison System) is a mobile encounter net-

works application for distributing gasoline prices between mobile

devices running Symbian OS.

GPS (Global Positioning System) is a satellite-based radio positioning

system that provides positioning, velocity and time information to

GPS device users.

GSM (Global System for Mobile communications) the second generation

digital cellular technology used for transmitting mobile voice and

data services.

IDE (Integrated Development Environment) is a type of computer soft-

ware that assists computer programmers to develop software.

L2CAP (Logical Link Control and Adaptation Protocol) is used within

the Bluetooth protocol stack for segmentation, reassembling and

protocol mixing.

Middleware is a software that provides a programming model above the basic

building blocks of processes and message passing [6].

ii

MP2P (Mobile Peer-to-Peer) extends P2P by allowing resource sharing in

a mobile environment.

P2P (Peer-to-Peer) refers to decentralized and self-organizing overlay

architectures of equal and autonomous entities for sharing distrib-

uted resources.

RFCOMM (Radio Frequency Communications Protocol) is a protocol located

on the top of the L2CAP protocol. It emulates the RS232 serial

port and in this way o�ers an API to software developers.

SDP (Service Discovery Protocol) is a protocol located on the top of the

L2CAP protocol. It handles the service discovery of the Bluetooth

devices.

SPA (Social Proximity Applications) are social mobile computing sys-

tems used to enhance existing social behaviors, practices, and ex-

periments taking place in physical space (`human interaction') with

the aid of data exchange between radio-equipped mobile devices

(`digital interaction') [30].

Series 60 A feature-rich software platform for smartphones with advanced

data capabilities that is optimized for the Symbian OS [33].

Symbian OS The global industry standard operating system for smartphones,

which is licensed to the world's leading handset manufacturers.

Uikon The generic UI library and control framework common to Symbian

Platforms [8].

UML (Uni�ed Modelling Language) is a language for specifying, visu-

alizing, constructing, and documenting the artifacts of software

systems, as well as for business modelling and other systems.

WLAN (Wireless Local-Area Network) is a type of local-area network that

uses high-frequency radio waves rather than wires to communicate

between nodes.

iii

Contents

Preface i

Glossary ii

Contents iv

1 Introduction 1

2 Existing Applications 3

2.1 Introduction . 3

2.2 Analysis and Comparison . 3

2.3 Applications Overview . 4

2.3.1 Nokia Sensor . 4

2.3.2 Nokia Flier . 5

2.3.3 BEDD . 5

2.3.4 Proxidating . 5

2.3.5 MobiLuck . 6

2.3.6 BuZZone . 6

2.4 Conclusion . 7

3 Mobile Encounter Networks 9

3.1 Introduction . 9

3.2 De�nition and Description . 9

3.3 Information Di�usion . 10

3.4 Bene�ts and Shortcomings . 11

3.5 Feasible Application Areas . 12

3.5.1 Grocery Store Price Service . 12

3.5.2 Dating Service . 12

3.5.3 Joke Service . 13

3.5.4 Event Service . 13

3.5.5 Newspaper Service . 13

3.6 Conclusion . 13

iv

4 BlueCheese Middleware 15

4.1 Introduction . 15

4.2 Application and Middleware . 15

4.3 Purpose and Functionality . 16

4.4 GSM-based Location Service . 17

4.5 BlueCheese Protocol Stack . 18

4.6 Conclusion . 19

5 Gasoline Price Comparison System 20

5.1 Introduction . 20

5.2 Application Scenario . 20

5.3 User Interface . 21

5.3.1 Gas Stations View . 21

5.3.2 Gasoline Attributes View . 22

5.3.3 Pro�les View . 23

5.3.4 Pro�le Settings View . 23

5.4 Design and Implementation . 24

5.4.1 Language Localization . 24

5.4.2 Splitting the UI and the Engine 24

5.4.3 GPCS UI . 25

5.4.4 GPCS Engine . 27

5.4.5 Communication Scenario . 29

5.4.6 Updating Views . 31

5.5 Conclusion . 34

6 Conclusions and Future Work 35

7 Bibliography 37

Appendices

A Classes Functionality 40

A.1 Class MGpcsObserver . 40

A.2 Class CGpcsEngine . 41

A.3 Class CLocationList . 45

A.4 Class TLocation . 48

A.5 Class CGasolineList . 49

A.6 Class TGasoline . 52

A.7 Class MPro�leObserver . 53

v

A.8 Class CPro�leList . 54

A.9 Class CSettingsData . 58

vi

1 Introduction

This thesis was inspired by professor Jarkko Vuori's idea about Gasoline Price Com-

parison System (GPCS). GPCS lets drivers' mobile devices automatically exchange

information about gasoline while they are in immediate proximity to each other. Hav-

ing possessed such information, the driver has the possibility to choose an appropriate

place to refuel in the future. These information exchanges are free of charge because

there is no central server in the system and using a common short-range wireless tech-

nology the transmission does not cost to the users.

Since this kind of applications share their memory space and data to achieve some

common bene�ts while running on radio-equipped mobile devices, they are called Data

Sharing Applications (DSA) in this work. There are some potential applications in

which such Data Sharing can be successfully used. In this thesis they are presented as

well as some existing applications are brie�y reviewed.

These mobile applications have appeared in the past few years forming a new class

of mobile networks. These networks, called mobile encounter networks, allow local

information exchanges between mobile devices using a common short-range wireless

technology (such as Bluetooth [4] or 802.11 WLAN [16]) without going through a

central server. Their main distinction from mobile ad hoc networks, which are not yet

widely used on mobile devices market because of their complexity1, is the absence of

multihop routing and thus avoiding costs for creating/maintaining routes. Although

multihop routing considerably extends reachability and decreases latency in mobile ad

hoc networks, it is not applicable for mobile encounter networks since they are not

intended for searching, but rather for spreading information to interested parties.

Another emerging direction in this �eld is social mobile computing which aims at

supporting social encounters in physical space by providing information or services

in connection with face-to-face encounters. According to Persson [30] this kind of

applications are called Social Proximity Applications (SPA).

The thesis is roughly organized into two parts. The �rst part, Chapters 2-4, gives

the general background for the research discussed in the thesis as well as the research

itself: Chapter 2 considers existing applications of both DSA and SPA; Chapter 3

introduces mobile encounter networks, information di�usion in these networks, their

bene�ts and shortcomings as well as some potential application areas where these net-

1Section 3.4 is dedicated to these issues.

1

works could be used [36]; Chapter 4 is dedicated to the BlueCheese middleware that

facilitates communication between applications in mobile encounter networks provid-

ing higher-level functions for application-speci�c data exchanges. The second part,

Chapter 5 and Appendix A, is the practical part of the thesis: Chapter 5 describes the

UI application, called Gasoline Price Comparison System, which has been developed in

the scope of this thesis as a prototype to illustrate the feasibility of mobile encounter

networks applications and together with BlueCheese middleware, it might be used for

studying the network characteristics of the system; Appendix A presents the function-

ality of GPCS engine's classes expressed in UML notation as well as the header �les in

which these classes are de�ned. Finally, the thesis is concluded in Chapter 6.

2

2 Existing Applications

2.1 Introduction

As mentioned earlier, there are two groups of applications currently on the market that

suit to the mobile encounter network architecture:

• Data Sharing Applications (DSA) are data sharing mobile computing systems

used to share their memory space and data to achieve some common bene�ts

with the aid of data exchange between radio-equipped mobile devices;

• Social Proximity Applications (SPA) are social mobile computing systems used

to enhance existing social behaviors, practices, and experiments taking place

in physical space ('human interaction') with the aid of data exchange between

radio-equipped mobile devices ('digital interaction') [30].

'Nokia Sensor' [26], 'Nokia Flier' [25], 'BEDD' [3], 'MobiLuck' [22], 'Proxidating'

[31], 'Dreamlove' [10] and 'BuZZone' [5] belong to SPA whereas 'BEDD', 'Nokia Flier'

and 'GPCS' belong to DSA. Of course, some applications, such as 'Nokia Flier' or

'BEDD', can belong to both groups.

2.2 Analysis and Comparison

As will be shown in the next section, all these applications utilize the same means to

achieve rather di�erent purposes. The applications, while running in the background

of mobile devices, automatically exchange some speci�c pieces of information with

others that come within the range of Bluetooth. The applications, which belong to

SPA typically exchange personal information, such as personal pages or pro�les or

even business cards, in order to meet new friends or business partners. Many such

applications allow the user to de�ne search criteria used to alert him/her whenever

interesting contacts have been found. The applications which belong to DSA typically

exchange non-personal information collected from di�erent sources, such as various

events, jokes or even gasoline prices, in order to help in making decisions. Therefore

DSA might also stand for Decision Support Applications. The applications BEDD and

Nokia Flier belong to both groups. The BEDD application is multifunctional and has

3

features of both SPA and DSA whereas the Nokia Flier application is rather simple,

but it might be used for both purposes.

Unlike DSA, today's SPA do not forward the information obtained from mobile

devices in earlier encounters to mobile devices in new encounters. However, it might

signi�cantly increase the reach of new potential contacts. Whenever a match is dis-

covered, people can then make direct contact with each other via contact information,

such as phone number or e-mail.

2.3 Applications Overview

In this section the main features of the applications are brie�y presented as well as

some screenshots are provided. All these applications run on Series 60-based mobile

devices. The only exception is the BuZZone application, which runs on PDA devices.

2.3.1 Nokia Sensor The Nokia Sensor application shown in Figure 2.1 is free of

charge and is downloadable from [26], which describes it as follows:

a. b.

Figure 2.1: Sensor: main menu (a) and scan results (b) (adapted from [26])

With Nokia Sensor you can create your own personal pages - called a folio - on

your phone. Then you can check out the folios of other Sensor users nearby,

exchange messages, and share �les. Nokia Sensor uses Bluetooth wireless tech-

nology, which means that it works within a 'circle' of up to 10 meters around your

phone. When other Sensor phones come within this circle, your phone can 'sense'

them and you can see their folios and send them messages. As soon as you step

out of each other's circles, you are no longer able to communicate via Sensor. Be-

cause phones running the Sensor application communicate directly without going

through an operator network service, communication is free of charge.

4

2.3.2 Nokia Flier The Nokia Flier application is free of charge and is downloadable

from [25], which describes it as follows:

Nokia Flier application allows you to create and locally distribute short messages

containing text and a picture. When you have created your own �ier you can

publish it to other Nokia Flier users, who are close by (about 10 m) and have ac-

tivated Nokia Flier application on the phone. Nokia Flier uses Bluetooth wireless

technology for communicating with other phones. Nokia Flier application contains

a screen saver that you can use to view received or saved �iers. For power saving

reasons, Nokia Flier will be automatically turned o� after 12 hours of use.

2.3.3 BEDD The BEDD application shown in Figure 2.2 is free of charge and is

downloadable from [3], which describes it as follows:

a. b.

Figure 2.2: BEDD: main menu (a) and BEDDbay (b) (adapted from [3])

BEDD, while running in the background of your mobile phone, automatically

exchanges your pro�le with other users that are in your proximity. BEDD also

exchanges ads about things that you would like to buy or sell. The software then

makes a correlation analysis and, if your criteria are met, alerts you to an exciting

match! BEDD enables you to send free Bluetooth text messages or easily share

video, image or sound �les. You can also make regular mobile contact via SMS,

MMS, phone call, IM or e-mail. BEDD is like social networking sites, on-line

chat and newspaper classi�eds, only all inside your mobile phone.

2.3.4 Proxidating The Proxidating application suits well to the Dating service,

which is described in Section 3.5. Another suitable application for the Dating service

5

is Dreamlove. The Proxidating application costs around 3 EUR and is downloadable

from [31], which describes it as follows:

Proxidating is a totally new way for single people to meet up instantly. All you

need to do is install Proxidating on your mobile phone, create your pro�le, enable

Bluetooth and wait for your dream date to appear. Whenever you come within

about 15 m of a person with a matching pro�le your phone will alert you. Only

people with matching pro�les will be linked via their phones. Proxidating automat-

ically sends the text and image that you have de�ned to your potential date. In

the same way, you will receive text and image from the matched partners' phone.

2.3.5 MobiLuck The MobiLuck application shown in Figure 2.3 costs around 15

EUR and is downloadable from [22], which describes it as follows:

a. b.

Figure 2.3: MobiLuck: main menu (a) and alert (b) (adapted from [22])

With MobiLuck you can detect all nearby Bluetooth devices (your cell phone rings

or vibrates when it �nds one), send messages and photos for free to friends or

strangers with no need of their phone numbers, hear when you receive a Bluetooth

message and reply to the sender, send your pro�le and receive pro�les from other

MobiLuckers including their photo, send MobiLuck to other people so you'll meet

more and more MobiLuckers.

2.3.6 BuZZone The BuZZone application shown in Figure 2.4 is free of charge and

is downloadable from [5], which describes it as follows:

BuZZone application o�ers users the convenience of using Bluetooth-enabled lap-

tops and PDAs to �nd new contacts, communicate over small distances, and share

6

a. b.

Figure 2.4: BuZZone: search pro�le (a) and chat (b) (adapted from [5])

information related to their business. BuZZone works as follows: your personal

pro�le will tell other people about your interests, either personal or business, in-

cluding photo and voice messages. In turn, you de�ne your search criteria for

people you want to make contact with. Wherever you are, at a trade show, in a

subway or a co�ee house, your BuZZone will be in continuous search for other

BuZZone users located nearby. If it �nds another user with a pro�le matching

your search criteria, the program will invite both users to get acquainted and start

talking. You can also join BuZZone-based wireless forums to discuss various top-

ics with your virtual contacts.

2.4 Conclusion

Most SPA do not strictly suit to the mobile encounter network architecture because

as will be shown in Section 3.3 the information being spread over such networks can

be obtained not only from the mobile device which created it, but also from other

mobile devices. Nevertheless, it is obvious that much faster di�usion of information

can be achieved in this way. At the same time to prevent sharing as well as keeping in

memory outdated information such applications might remove it automatically after

the expiration time typical for a speci�c type of service. Of course, it is not always

possible to communicate face-to-face or using short-range wireless technology with a

7

new contact in case the information was not obtained from origin. However, getting

in touch with interesting contacts is still possible via SMS, MMS, phone call, IM or

e-mail.

The Nokia Flier application is an interesting representative of DSA since the user

can choose only one �ier to share among a number of the obtained ones (or create a

new one). Here we deal with simple collaborative �ltering, since with this application

only the best �iers are being spread over the network (see Joke Service in Section 3.5).

8

3 Mobile Encounter Networks

3.1 Introduction

Mobile peer-to-peer (MP2P) networks are designed for resource sharing in a mobile

environment. These networks include infrastructureless ad hoc networks as well as

infrastructure-based cellular networks with end terminals having capabilities to share

their resources. There are various examples of peer-to-peer applications for ad hoc

networks [18, 9, 38, 15], cellular networks [21, 2] or both [13, 17].

This chapter introduces a new class of mobile networks. These networks are called

mobile encounter networks. Mobile encounter networks do not require an infrastructure

and do not have problems of multihop communication requiring much lower density

of mobile devices compared to ad hoc networks for operation. There are however

certain limitations of applications operating in mobile encounter networks, but as will

be shown, some applications are very feasible to be built using the mobile encounter

network architecture.

3.2 De�nition and Description

Mobile encounter networks are formed of two mobile devices coming across each other

and having a connection between them using a short-range radio technology (such as

Bluetooth [4] or 802.11 WLAN [16]). One encounter contains the discovery of devices,

connection establishment between two devices and the exchange of data. One mobile

device can form connections to multiple other devices in succession. In this way, the

information from one device can be copied to other mobile devices. The duration of

the encounter is usually short, because of the mobility of the devices, but it can also be

long if the mobile devices are not moving. A mobile encounter network is the network

resulting from all encounters. Mobile encounter networks are very dynamic and in

contrast to ad hoc networks, they do not provide continuous multihop communication,

but only a pair-wise communication between two mobile devices.

Peer-to-Peer refers to decentralized and self-organizing overlay architectures of equal

and autonomous entities. Peer-to-Peer architectures are designed to support the �nd-

ing and using of distributed resources and they do not usually have a central entity,

which manages the network. Mobile Peer-to-Peer then extends Peer-to-Peer by allow-

9

ing resource sharing in a mobile environment. Mobile encounter networks are also used

for resource sharing. They are also decentralized and consist of equal and autonomous

entities, but do not require functionalities for self-organization.

Multihop resource discovery commonly found in peer-to-peer networks is missing

from mobile encounter networks. Resource discovery in mobile encounter networks is

done via pair-wise communication between two mobile devices inside an encounter and

does not involve other devices outside the encounter. The way of obtaining data in

mobile encounter networks is push-based rather than pull-based commonly found in

other mobile peer-to-peer networks [28]. Mobile encounter networks are not intended

for searching, but rather for spreading information to interested parties. Therefore,

mobile encounter networks do not strictly belong to the areas of Peer-to-Peer or Mobile

Peer-to-Peer.

3.3 Information Di�usion

Information di�usion in mobile encounter networks happens when a mobile device

stores information obtained from another mobile device in an earlier encounter and

later forwards the information to another mobile device in a new encounter. The

di�usion of information in such a network is delayed and represents a way of replicating

information lazily among the devices. The origin of the information di�used in mobile

encounter networks can be any external source e.g., user or device.

The devices participating in the mobile information di�usion need to provide some

resources for the di�usion process. For example, transmitting information always re-

quires some amount of battery power and therefore some parts of the information

di�used in the mobile encounter network need to be relevant for the user of the device.

However, in general participating in such a network is inexpensive, because trans-

mitting information using short-range radio technologies does not involve a network

operator and consequently payments are not needed.

Some devices in the network might restrict the di�usion of information by not

forwarding any information. Usually, this reduces the speed of information di�usion

in mobile encounter networks, but in some cases it might be bene�cial. For example

in applications where any user can create content, a user could select which content is

good and allow the further di�usion of that information to other mobile devices. Then,

each mobile device when receiving the same content multiple times decides using for

example a threshold how many times the same content needs to be obtained and if

a given threshold is exceeded, the information is accepted. As a global e�ect, only

content rated good enough would �ow in the network. This is called collaborative

10

�ltering [35].

Earlier studies on information di�usion in a delay-tolerant networks using simula-

tions can be found from [19, 20, 28, 37].

3.4 Bene�ts and Shortcomings

Compared to infostations [14], mobile encounter networks provide faster di�usion of in-

formation, because mobile devices can obtain information not only from the infostation,

but also from other devices.

In infrastructure-based information di�usion, for example in a GSM network, the

network is used to transmit information from a mobile device to a centralized server and

mobile devices use this centralized server to obtain data. Compared to infrastructure-

based information di�usion, mobile encounter networks often provide a slower informa-

tion di�usion and limited coverage. This is because the information is only available

to those mobile devices which have encountered other mobile devices providing the

information. However, there are certain advantages in information di�usion over mo-

bile encounter networks. First, there is no need for infrastructure for transmission of

data. Second, the information di�usion in mobile encounter networks is inexpensive,

because no external service provider is needed for the transmission of data. Also, be-

cause all communication happens inside encounters between two mobile devices, there

is no need for external server where information would be stored. Without an external

server, which potentially could become a bottleneck in a large system, mobile encounter

networks are also very scalable.

A mobile encounter network resembles an ad hoc network in the sense that it allows

two mobile nodes that come within range of each other to establish a connection and

exchange data. There are however many di�erences between mobile encounter networks

and what is usually considered as ad hoc networking.

Perkins [29] shows that the main problem in ad hoc networks is to provide mul-

tihop routing of data (in a unicast, multicast or broadcast way) through the mobile

nodes which are potentially moving and continuously changing the con�guration of the

network. A route in an ad hoc network can be repetitively broken due to a node in its

path moving out of the reach of its neighbors and a signi�cant research e�ort is put into

designing algorithms for repairing broken routes without generating too much control

tra�c. Moreover, routing requires assigning global addresses to the nodes, since the

data sent by a source node is targeted at a speci�c destination node (or possibly at a

multicast group), which is not necessarily within the transmission range of the source.

Compared to ad hoc networks, mobile encounter networks di�er in that they do not

11

provide any routing facility, since the goal is to spread information to as many nodes

as possible rather than to target-speci�c destinations: a source node running one given

application over a mobile encounter network sends data to any other node running the

same application coming within its transmission range. The other node will cache the

data, and later send it further when it comes within range of still other nodes. There is

no need for mechanisms preventing data to loop back to its original source as in many ad

hoc networks protocols. Moreover, since data is sent only to neighbors which are within

transmission range, global addressing is not necessary (the underlying communication

medium takes care of assigning addresses to the nodes which are within range of each

other since actual data transmission requires distinguishing di�erent neighbors). In

particular, mobile encounter networks do not require the functionalities commonly

found in the network layer of protocol stacks whereas the scope of ad hoc networks

is mainly in the network layer. Mobile encounter networks operate in the application

layer and require from the protocol stack only unreliable link layer transmissions using

some wireless radio technology and a reliable data transport functionality of transport

layer (such as TCP).

3.5 Feasible Application Areas

In this section �ve application areas where mobile encounter networks could be used are

brie�y presented whereas the next chapter is completely dedicated to one particular

application of mobile encounter networks, called Gasoline Price Comparison System

(GPCS).

3.5.1 Grocery Store Price Service Having bought some goods at a grocery store,

a user of the Grocery Store Price Service gets the possibility to share their prices, time

and location of the store with other users encountered at the streets or other public

places. Being aware of prices of goods taken from di�erent grocery stores, the user can

choose the cheapest place for shopping next time. The idea of the Grocery Store Price

Service is very similar to GPCS that is considered in Chapter 5.

3.5.2 Dating Service Every user of the Dating Service creates his/her pro�le of

personal characteristics as well as a �lter describing what characteristics are preferred

for matching new friends. After that the user's mobile device is ready to share the

pro�le with other devices it encounters as the users come across. Having received a

pro�le from a paired device, both applications match their �lters with the user pro�le

instantly. In case of a match, the applications from both sides inform their users about

12

it. The rest depends on them.

3.5.3 Joke Service The users of the Joke Service can create new jokes and ex-

change jokes with other users encountered. Such application can provide to the users

the possibility to rate incoming jokes or even prevent their further propagation, mak-

ing it possible to propagate only a subset of available jokes that the majority of users

like most whereas bad jokes will be quickly eliminated. A similar application is the

tourist attraction service, where users rate di�erent tourist attractions and via collab-

orative �ltering the application can provide rated information about di�erent tourist

attractions.

3.5.4 Event Service In the Event Service, the initial content for example tourist

information is obtained from an infostation, because such content is usually provided

by commercial or state organizations. However, the utilization of mobile encounter

networks makes information di�usion much faster due to their ability to retransmit

the content to other mobile devices. The same kind of mechanism could also be used

for example to deliver Really Simple Syndication (RSS) Feed Services [32] to users

subscribed to certain RSS feeds.

3.5.5 Newspaper Service Newspapers could also be distributed using mobile

encounter networks. Short-range radio technologies are usually faster compared to

infrastructure-based networks, for example GSM/GPRS networks, and therefore large

data �les are more e�cient to be delivered using mobile encounter networks. Also for

the user, the delivery of newspaper would be cheap. To avoid piracy, the contents of

the newspapers would be transferred using mobile encounter networks, but the key for

accessing an encrypted content could be obtained via centralized server. With this

kind of a mechanism the newspaper provider would be able to charge for the content.

3.6 Conclusion

In this chapter the following aspects of mobile encounter networks have been consid-

ered: de�nition and description as well as bene�ts and shortcomings of these networks,

information di�usion in these networks as well as �ve application areas where these

networks could be used.

Mobile encounter networks are emerging as a new area of mobile communication,

because of wide-spread use of short-range radio technologies in today's mobile devices.

Some applications are well suited for mobile encounter networks, which are restricted

13

to only one-hop communication. Compared to ad hoc networks, simpler algorithms can

be used, and compared to cellular network based MP2P applications, no infrastructure

is needed.

14

4 BlueCheese Middleware

4.1 Introduction

Since applications in mobile encounter networks interact with each other through mo-

bile communication technologies, such as Bluetooth [4] and 802.11 WLAN [16], it is

reasonable to create a middleware module that hides the details of each of them pro-

viding application developers with technology independent higher-level functions for

communication in these networks.

BlueCheese middleware was developed in a student software project during Autumn

2003 in the Department of Mathematical Information Technology at the University of

Jyväskylä. The project's goal was to build a middleware for studying the feasibility

of applications in mobile encounter networks. This middleware runs on mobile devices

with Symbian OS and uses a common short-range radio technology as a transmission

method. In the current implementation of the middleware Bluetooth radio technology

was chosen for this purpose because of its availability in the majority of Symbian OS

mobile devices, although 802.11 WLAN also might be used in future releases.

BlueCheese middleware was released under a public license. The license used is the

Academic Free License 2.0 [1].

In this work the middleware is brie�y considered from the point of view of the

application developer. The full project documentation is available on the Web and can

be found at the project homepage [23].

4.2 Application and Middleware

Applications have a user interface through which users interact with the software per-

forming some speci�c task. The application might want to communicate with other

applications, but does not want to know how this communication is handled in details:

it relies on higher-level functions to communicate with other applications. Applications

also handle data speci�c to one task (the task for which the application is designed)

and understands the meaning of the data.

Middleware, on the other hand, does not have a user interface running without user

intervention. It handles tasks that are generic and/or common to several applications.

It provides the application with higher-level functions for communication, and takes

15

care of the details of the procedure. It does not know anything about the data that

it is given by the application. Only one instance of the middleware is loaded into the

memory while serving numerous applications.

4.3 Purpose and Functionality

The main purpose of BlueCheese middleware is to facilitate communication between

applications in mobile encounter networks providing higher-level functions for appli-

cation speci�c data exchange. A GSM-based location service is an extra feature of

BlueCheese that gets current location from GSM base stations and compares locations

to the current one when needed as described in detail in Section 4.4. However, GSM

network is not needed for BlueCheese operation, but the location information can be

used whenever it is available.

BlueCheese middleware provides its services to multiple applications simultane-

ously, however, it allows only pair-wise communication between two mobile devices.

BlueCheese �nds new mobile devices automatically and establishes a connection to the

�rst one seen in the range unless it has already been seen recently. Other found mobile

devices are queued and served as soon as the existing connection is closed. BlueCheese

also handles queuing of the packets in both the sending and receiving sides of the

connection.

There are two di�erent data transferring modes in BlueCheese. The �rst one is

the packet mode and the second one is the stream mode. The packet mode is meant

for sending and receiving packets with limited size and it provides a connectionless

service. The stream mode, on the other hand, is meant for large amounts of data and

it is connection-oriented.

Here are the functionalities required from the middleware by applications:

• create a session with the middleware and inform it of the kind of data the appli-

cation is interested in;

• release the session with the middleware;

• whenever a mobile device is in range, the application is informed that a commu-

nication can take place with the device;

• send a small amount of data to the remote device (data packet);

• receive a small amount of data from the remote device (data packet);

• send a large amount of data to the remote device (data stream);

16

• get a large amount of data from the remote device (data stream).

Before the application can use the services provided by the middleware, it must

create a session with the middleware and inform it of the kind of data the application

is interested in. The middleware performs automatic scanning of mobile devices at

background and informs the application whenever a new suitable device is found. Then

the application is able to send/receive a small amount of data in the packet mode or

a large amount of data in the stream mode. When the application does not need the

services anymore, it has to release the session with the middleware.

4.4 GSM-based Location Service

The most e�cient geographical location is done using GPS (Global Positioning Sys-

tem), a satellite-based infrastructure that allows to know one's precise location (using

latitude and longitude) on the surface of the Earth. It is very precise, but requires a

dedicated receiver. Most mobile devices do not integrate a GPS receiver.

The GSM-based location service is meant to be a reasonable alternative to GPS,

providing its solution based on knowledge of the GSM network's design. In the GSM

network the covered area is divided into zones called local areas. Each local area is

divided into cells. Each cell has a unique identi�cation number within a local area,

and each local area has a unique identi�cation number within a network. Most of the

Symbian OS mobile devices have access to the GSM network and due to that they

are able to get the identi�cation numbers of the current cell and local area. Using

this data, the GSM-based location service was implemented, which is not as precise as

GPS, but still gives an estimation of the distance between the device's position and an

entity located in a given cell. The estimation procedure is presented below:

• if the device and the entity are in the same cell, they are very close to each other;

• if they are in di�erent cells, but within the same local area, they are quite close

to each other;

• if they are in di�erent local areas, they are far away from each other.

As the mobile device is likely to move within a GSM network, it can remember in

what zone (a set of cells and/or a set of local areas) it is often located, and consider

that this zone is home and everything located in this zone is close. The device can

then accept location-dependent data whose origin is within the zone, and reject data

coming from the outside of that zone.

17

One can also imagine to build a map of the cells which are encountered while

moving, exchange these maps with the mobile devices that one communicates with,

and thus slowly build a bigger map which would also allow to estimate straight-line

distances between two cells. The distance unit could be the number of cells one needs

to cross to go from one of these cells to the other one.

Nevertheless, one possible inconvenience of the use of this idea is that di�erent

mobile operators have di�erent GSM networks and therefore di�erent identi�cation

numbers of cells and local areas for the same zone. That is why, in order to build the

map shared by community, mobile devices have to remember the identi�cation numbers

of numerous GSM networks that eventually leads to an increased amount of bytes to

be stored and/or transmit.

4.5 BlueCheese Protocol Stack

As mentioned earlier, the Bluetooth radio technology was chosen as a transmission

method in the current implementation of the middleware. Thus, the BlueCheese proto-

col stack includes the Bluetooth protocol stack. The Bluetooth transmission protocols

Figure 4.1: BlueCheese middleware (adapted from [24])

18

L2CAP and RFCOMM as well as the SDP protocol are involved in the communication

process between Bluetooth-enabled mobile devices:

• L2CAP (Logical Link Control and Adaptation Protocol) is used for the packet

mode transfer;

• RFCOMM (Radio Frequency Communications Protocol) is used for the stream

mode transfer;

• SDP (Service Discovery Protocol) is used for discovering other mobile devices.

Figure 4.1 illustrates a number of di�erent protocols and modules involved in

BlueCheese middleware and their relations. Refer to [4] for more information about

the Bluetooth radio technology.

4.6 Conclusion

BlueCheese middleware has been brie�y considered in this chapter from the point of

view of the application developer. The middleware was released under public license

and was built for studying the feasibility of applications in mobile encounter networks.

The main purpose of BlueCheese middleware is to facilitate communication between ap-

plications providing higher-level functions for application-speci�c data exchange. The

Bluetooth short-range radio technology is used as a transmission method. The location

service is an extra feature of BlueCheese middleware that locates the mobile device po-

sition in the GSM network based on the identi�cation numbers of the current cell and

local area.

19

5 Gasoline Price Comparison System

5.1 Introduction

Gasoline Price Comparison System (GPCS) is a mobile application, executed in mobile

devices with Symbian OS (Series 60 Platform) [11, 34, 33]. Its purpose is to help making

decisions of where to refuel. To achieve that, a mobile device collects the following

attributes of every gas station where the user's car is refuelled and di�uses them to

other mobile devices:

• Brand and location of gas station;

• Price and type of gasoline;

• Time of buying gasoline.

A middleware, called BlueCheese, that uses Bluetooth [4] as a transmission method,

can be integrated with GPCS to make the information exchange possible. BlueCheese

middleware was developed in a student software project [23] during autumn 2003 in the

University of Jyväskylä (see Chapter 4 for details). However, BlueCheese has not been

integrated with GPCS yet. Both the application and middleware were implemented

using the C++ programming language, Series 60 SDK for Symbian OS and Microsoft

Visual C++ 6.0 IDE.

5.2 Application Scenario

The following scenario illustrates the use of the application. A driver, equipped with

GPCS, buys gasoline at his/her favorite gas station. The attributes, described above,

are sent into the application with a bill for the gasoline, bought by using the driver's

mobile device. It is expected that mobile device holders will have such a possibility

very soon. Having received these attributes at the gas station, the mobile device starts

di�using them using a short-range radio technology such as Bluetooth to other mobile

devices it encounters as the car moves around. After a certain period of time the

application removes them automatically to prevent sharing and keeping in memory

outdated information. The same way other drivers, equipped with GPCS, share the

information about other gas stations. By making such exchanges, all participants

20

receive the information about further gas stations on their way, making it possible to

choose the best place where to refuel next time, saving their money and time. This

also boosts market-based economy by giving customers equal information about the

market situation.

5.3 User Interface

At the current stage of development there are four views in the application: gas stations

view, gasoline attributes view, pro�les view and pro�le settings view. In this work the

term view is used in consideration of the View Architecture that is one of the di�erent

approaches available in Avkon for writing an application UI [7]. Each view is described

in the following sections.

5.3.1 Gas Stations View The purpose of the Gas Stations View is to display brief

information about currently known gas stations. Each gas station, represented here by

its brand logo and location, occupies a separate item in a list as illustrated in Figure

5.1 (a). The items in the list are sorted by gasoline price as a primary key and time as

a. b.

Figure 5.1: Gas stations �ltered by the pro�le in use (a) plus location (b)

a secondary key. They are also �ltered by the pro�le currently in use, whose name can

be seen at the application navi pane, e. g. Mercedes Benz (for more information about

the pro�les see the description of the Pro�les View presented below). In case the driver

is interested in a particular location or region rather than the lowest price, there is a

popup toolbar for �ltering items on the �y, as depicted in Figure 5.1 (b). The toolbar

can be easily activated just by starting typing on the mobile device keypad. Having

chosen a desired item from the list, the driver can press either the scroll key or Options

and Open to study the corresponding gasoline attributes, residing on the other view.

21

Finally, let us consider the events, which lead to modi�cations in the list:

• A new item addition or an existing item update. It arises after buying gasoline

or after an encounter with another mobile device;

• An existing item removal. It arises after a certain period of time when the

information about gasoline is considered outdated.

5.3.2 Gasoline Attributes View The purpose of the Gasoline Attributes View

is to display the attributes of a particular gasoline as well as the size of the list. As

described earlier, these attributes include location, brand and type as well as time and

price. The combination of the �rst three attributes de�nes the so called gasoline id. The

last two attributes are the variables associated to it; their values are being constantly

updated. Since gas stations o�er di�erent gasoline types, such as 95E, 98E and Diesel

(and the pro�les support displaying di�erent gasoline types simultaneously), several

items in the list in the Gas Stations View might be identical. As shown in Figure 5.2

a. b.

Figure 5.2: Gasoline attributes: 1st (a) and 7th (b) items of the list

the application status pane duplicates the information of the appropriate list item in

the Gas Stations View, whereas the other attributes are presented in a convenient list-

form in the main pane: the attribute names are on the left side, the attribute values

are on the right side. According to Figure 5.2, 95E gasoline price was 1.219 EUR per

a liter at the Shell gas station in Ristonmaa, Jyväskylä 3 minutes ago (a), whereas

the same gasoline was slightly more expensive at the Esso gas station in Myllyjarvi,

Jyväskylä 2 minutes ago (b).

The driver can go to the next or previous item of the list by pressing the Left or

Right arrow on the scroll key.

22

5.3.3 Pro�les View The purpose of the Pro�les View is to manage user de�ned

pro�les as illustrated in Figure 5.3. It is possible to create a new pro�le, remove an

existing one, activate or personalize it. Nevertheless, the pro�le currently in use cannot

a. b.

Figure 5.3: User-de�ned pro�les (a) and menu (b)

be removed. Only the available options are displayed in the menu, e. g. while the

active pro�le is selected in the list, the options Activate and Delete are not displayed.

In spite of the fact that the application is able to keep many pro�les, it uses only one

pro�le at any one time. While launching the application for the �rst time, the default

pro�le named General is created. This pro�le does nothing by default, however, it can

be personalized. It can also be removed, once another pro�le has been created and

activated.

Using pro�les, the driver can specify gasoline preferences for a particular car to �lter

out the irrelevant information. These pro�les become very useful in case the driver has

several cars and these cars use di�erent gasoline. The pro�le currently in use is shown

at the application navi pane.

5.3.4 Pro�le Settings View The purpose of the Pro�le Settings View is to modify

settings of a particular pro�le as depicted in Figure 5.4. The driver can specify the

following gasoline attributes to be taken into account while �ltering:

• A name of the pro�le, which is an arbitrary text used for pro�le identi�cation;

• A set of gasoline brands, which are prede�ned alternatives de�ned in the appli-

cation resource �le;

• A set of gasoline types, which are prede�ned alternatives de�ned in the applica-

tion resource �le.

23

According to Figure 5.4, the pro�le named Mercedes Benz is intended for a vehicle

that uses both 95E and 98E gasoline provided by all gasoline suppliers, such as Shell,

Esso and Neste.

a. b.

Figure 5.4: Pro�le settings (a) and gasoline type alternatives (b)

The driver can go to the next or previous pro�le by pressing the Left or Right arrow

on the scroll key.

5.4 Design and Implementation

In this section the following aspects of the application are considered: localization,

advantages of splitting the application into two parts, the UI and the Engine, their

architectures, a scenario for communication between two mobile devices with a practical

example and interactions between the UI and the Engine parts.

5.4.1 Language Localization Localization needs should be considered from the

beginning of a project [8] since in order to meet localization requirements applications

must distinguish language-speci�c data from common data, e.g. programmers develop

the code whereas translators provide language-speci�c data. The localization support

in Symbian OS is provided by compiled resource �les, which are not embedded into the

application �le and thus new resource �les can be added on-the-�y. While launching

the application, Symbian OS loads the appropriate resource �le base on the current

system language. Currently GPCS supports two languages: English and Finnish.

5.4.2 Splitting the UI and the Engine Applications are normally split into two

parts, the Engine and the UI, to aid maintainability and �exibility. The application

engine, also known as the application model, deals with the algorithms and data struc-

24

tures needed to represent the application data. The application UI, sometimes called

the app, deals with the on screen presentation of the application data and the overall

behavior of the application [7].

GPCS was designed in consideration of this statement. The application consists of

two main components: Gpcs and GpcsEngine . The Gpcs component is the standard

set of UI classes that provides the user interface framework and exists as a standard

Series 60 Application. The GpcsEngine component provides the model and data for

use by the Gpcs component and exists as a Shared Library DLL providing a �xed API

that can be used by more than one program. Being designed this way the application

has several advantages:

• Changes to the user interface are less likely to a�ect the model;

• When porting to another Symbian OS mobile device, typically the model remains

untouched and all that needs to change is the UI.

The following component diagram illustrates the split of classes over the Gpcs and

GpcsEngine components, and their interrelationships:

Figure 5.5: Splitting the UI and the Engine

5.4.3 GPCS UI Series 60 adds a User Interface Layer (Avkon) onto the underlying

Uikon from Symbian OS v6.1. Avkon provides a set of UI components and an applica-

tion framework designed speci�cally for Series 60 devices [8]. Application UIs can be

simple with only one main screen, e. g. a calculator, or complex with many screens,

e. g. a messaging application. Three architectural approaches have been identi�ed for

writing an application UI in Avkon [7]:

25

• Traditional Symbian OS Control Architecture;

• Dialog Based Architecture;

• View Architecture.

The choice of application architecture will depend on the application complexity,

the view navigation and communication requirements and the screen layout require-

ments. As mentioned previously, View Architecture was chosen for the GPCS UI. This

approach allows applications to register views, with one being active in each running

application at any one time. It does not dictate what a view is, but it provides support

for a view being a display page on the screen [7]. Applications designed using View

Architecture consist of four main application framework classes as shown in Figure 5.6.

Figure 5.6: View Architecture

The Application class operates as a startup object for the Series 60 application

framework and de�nes the application's properties. It also creates the document. The

base class for the application class is CAknApplication .

The Document class is used to store the application persistent state. An application

must have an instance of the Document class, although it may only be required to

launch the AppUi. The base class for the documents is CAknDocument .

The AppUi class is responsible for handling application-wide events such as Options

menu commands, opening/closing �les and the application losing focus. It typically

has no screen presence. Instead it delegates drawing and screen-based interaction to

the Views it owns. The base class for AppUis is CAknViewAppUi .

The View class is responsible for displaying data on the screen that the user can

interact with. Typically, Views are noti�ed of updates in the model's state by an

observer mechanism. They also pass user commands back to the AppUi. The base

class for Views is CAknView .

Note that all visible controls in Symbian OS must be derived from CCoeControl .

However, the CAknView class is derived directly from CBase, but a CAknView -derived

class typically has a CCoeControl -derived container.

26

The application framework is responsible for the creation of the Application. The

Application constructs the Document. The Document constructs the Engine and the

AppUi, which in turn creates the Views.

5.4.4 GPCS Engine The engine is represented in the UI by a CGpcsEngine class

that shares responsibility between the three classes, CProfileList , CLocationList

and CGasolineList , as illustrated in Figure 5.7. All three classes are derived from a

standard Symbian OS template class, CArrayPtrFlat , inheriting the behavior of �at

arrays. However, di�erent classes, CSettingsData , TLocation and TGasoline , are

speci�ed as a template argument.

Figure 5.7: GPCS Engine Class Diagram

The �rst class, CProfileList , is responsible for manipulating data of the user de-

�ned pro�les. It implements a MDesCArray interface to have the behavior of descriptor

arrays. Thus, an instance of the class can be treated as a descriptor array of the pro�le

names. The template argument, CSettingsData , was designed for keeping settings of

a particular pro�le.

The second class, CLocationList , is responsible for manipulating data of the gas

station locations. Each location is split into major and minor parts, e. g. Jyväskylä city

and Myllyjärvi city section, that are stored in memory as singletons. For this purpose

two instances of a standard Symbian OS class for descriptor arrays, CDesCArray , are

used as private member variables (not shown in the class diagram for simplicity). An

index number of the given major part, an index number of the given minor part and

the hash value obtained by hashing the major and minor parts (called location id)

represent an instance of the TLocation class or an item of the CLocationList class.

The third class, CGasolineList , is responsible for manipulating data of the gaso-

27

line attributes. As mentioned earlier, these attributes include brand and type with

prede�ned alternatives and therefore they have numerical equivalents as well as time

and price that are numbers as such. Together with location id of the given location,

they represent an instance of the TGasoline class or an item of the CGasolineList

class. There are two private member variables of the CDesCArray class (not shown in

the class diagram for simplicity) for keeping brands and types.

It is obvious that instances of the TLocation and TGasoline classes are linked

to each other through location id. This is �ne for network communication during an

encounter, but practically inconvenient for manipulating data inside the application.

Indeed, each time a gas station location, where a particular gasoline has been bought,

is to be displayed on the screen, it is necessary to look for location id of the gasoline

among numerous items of CLocationList . In order to speed up the link between

these objects the following trick is performed: instead of location id each object of

TGasoline class contains the index number of an appropriate item of CLocationList

while the objects are inside a device.

The following method of the CLocationList class illustrates the way of obtaining

location id :

01: TUint CLocationList::MakeId(const TDesC & aMajor,

02: const TDesC & aMinor) const

03: {

04: TUint id = 0;

05: TInt i;

06: for (i = aMinor.Length() − 1; i >= 0; i −−)

07: {

08: id = (id << 1) + aMinor[i];

09: }

10: for (i = aMajor.Length() − 1; i >= 0; i −−)

11: {

12: id = (id << 1) + aMajor[i];

13: }

14: id % = 65536; // id ∈ [0, 65536)

15: return id;

16: }

As mentioned previously, C++ programming language was chosen for the GPCS

implementation. The method takes two input arguments of type TDesC, which is an

28

abstract base Symbian OS class for descriptors, � the major and minor parts of a given

location and returns an integer � location id speci�c to the input arguments. The

method signature tells us that neither the input arguments nor the class internal state

will be changed after the method invocation. There are two cycles in the method used

for accessing individual characters of the major and minor parts. A code of the current

character is added to double sum of codes of previous characters as shown in the lines 8

and 12. Since location id occupies 2 bytes in the TGasoline class, it equals residue of

division of the total sum by 65536, the line 14. See Appendix A for more information

about the functionality of the GpcsEngine component classes.

Splitting the di�usion data into two classes, CLocationList and CGasolineList ,

in conjunction with an appropriate communication protocol has several advantages:

• The memory required for the data is kept minimal;

• The duration of the communication is kept minimal;

• Network tra�c is kept minimal.

5.4.5 Communication Scenario Let us consider a possible scenario for commu-

nication between two mobile devices. As soon as a connection is established the devices

start to send each other their gasoline attributes collected so far (or, in other words,

they send each other objects of the TGasoline class). Having received them the device

skips over their location ids. If unknown ones exist, it makes a request for their mean-

ings (or, in other words, a request for the major and minor parts that are accessible

through particular objects of the TLocation class).

Reducing the duration of the communication is a very important task because

an encounter is usually short. In this scenario the devices send each other all minimal

pieces of information that might be relevant avoiding the negotiation at the application

level. Since gasoline attributes are rather small, in the current implementation 8 bytes

per instance of the TGasoline class, 128 such objects occupy only 1 Kb whereas a

Bluetooth symmetric link allows data rates of 432.6 Kbps. The decisions of what to

keep and what to leave out are made o�-line based on the time attribute of the given

object with particular brand, type and location ids. Now the bene�ts of sending gasoline

attributes and gas station locations separately become evident. Each unknown location

is received only once by a particular mobile device whereas gasoline prices are constantly

changing. Moreover, gas station locations usually occupy more space because of the

textual content.

A simple and practical example of such communication between nodes A and B is

29

illustrated in Figure 5.8. The following three lists of objects of the TGasoline class

are used during the example explanation provided below:

• MAIN: accessible to the user through the UI as depicted in Figure 5.2;

• TODO: not accessible to the user since location ids are unknown;

• TEMP: exists temporarily only at the time of an encounter.

Figure 5.8: Communication example

Where GN
i is the ith item of MAIN at node N. First the nodes, A and B, push the

gasoline attributes to each other (1). Then each node pulls the unknown locations, if

any (2):

1. Initial state. Let us assume that A has two objects with unknown locations, which

have been received from nodes X and Y, whereas B has only one such object, which

has been received from node Z:

A B

MAIN GA
1 , GA

2 , GA
3 GB

1 , GB
2 , GB

3

TODO GX
i , GY

j GZ
k

TEMP - -

30

2. Having established the connection, MAIN+TODO are pushed to another node where

TEMP is �lled:

A B

TEMP GB
1 , G

B
2 , G

B
3 , G

Z
k GA

1 , G
A
2 , G

A
3 , G

X
i , G

Y
j

3. Items' location ids of TEMP are skipped over. Let us assume that A �nds only one

unknown id in the last item, whereas B �nds two unknown ids in the third and

in the last ones. These items are moved into TODO:

A B

TODO GZ
k , GX

i , GY
j GA

3 , G
Y
j , GZ

k

TEMP GB
1 , GB

2 , GB
3 GA

1 , GA
2 , GX

i

4. Items' locations of TODO are pulled from another node. In case TODO is empty, an

appropriate noti�cation must be sent, e.g. <All-Found>.

5. After pulling or after <All-Found> from both sides the connection is closed. The

objects with received locations are moved from TODO to TEMP:

A B

TODO GZ
k , GY

j GY
j , GZ

k

TEMP GX
i , GB

1 , GB
2 , GB

3 GA
3 , GA

1 , GA
2 , GX

i

6. In O�-line mode objects of TEMP are analyzed by time with appropriate (identical

location, brand and type) objects of MAIN and the newest ones are moved to MAIN.

TEMP is cleaned:

A B

MAIN GA
4 , G

A
5 , G

A
6 , G

A
7 , GA

1 , GA
2 , GA

3 GB
4 , G

B
5 , G

B
6 , G

B
7 , GB

1 , GB
2 , GB

3

TEMP - -

Having exchanged the data A got three new objects, GB
1 , GB

2 and GB
3 , and a new

location, LX
i , whereas B got four new objects, GA

1 , G
A
2 , G

A
3 and GX

i , with a new location,

LA
3 ; each node still has two objects with unknown locations, GY

j and GZ
k .

5.4.6 Updating Views As mentioned in Section 5.3, the list of collected gasoline

attributes is being updated constantly due to the following events: new items are

coming after either buying gasoline or an encounter with another mobile device and

because existing items are leaving the list after certain period of time. The application

is designed so that new items having come to the list are immediately displayed on

either the Gas Stations View or the Gasoline Attributes View whereas outdated items

are dropped during invoking the application. Let us consider these two types of events

in detail.

31

In the �rst case the views are noti�ed of updates in the Engine state by an observer

mechanism [12]. The following �gure illustrates the relations between the Engine and

the Gas Station View (or, in other words, the relations between CGpcsEngine and

CGpcsView with CGpcsContainer classes):

Figure 5.9: Simple observer mechanism

As shown in Figure 5.9, the CGpcsContainer class implements the MGpcsObserver

interface that has only one pure abstract method HandleUpdateL() . This method is

called by the CGpcsEngine class through a pointer, iStationListObserver , when-

ever it is necessary to update the view. In the current implementation of the software

there is only one way to get new gasoline attributes. For this purpose the CGpcsEngine

class has a public method tmpPayBillL() that is used to emulate paying bills as de-

scribed in Section 5.2. Its another public method, UpdateStationArrayL() , is typ-

ically called by the CGpcsContainer in the scope of the HandleUpdateL() method

to update the view based on the new Engine state.

The same observer mechanism is used between the Engine and the Gasoline At-

tributes View, but di�erent players are involved:

• A CGpcsContainer2 class instead of CGpcsContainer ;

• A iDetailsListObserver pointer instead of iStationListObserver ;

• A UpdateDetailsArrayL() method instead of UpdateStationArrayL() .

Let us summarize what was said above by the following diagram that shows the

sequence involved when the user presses the Call key on his/her mobile device while

the application is running and focused:

32

Figure 5.10: Updating views

Message Description

1 The framework noti�es the application that an event has occurred

through the CGpcsAppUi::HandleKeyEventL() method. The

event type is checked before continuing with this sequence.

2 The CGpcsEngine::tmpPayBillL() method is called in turn.

This method emulates paying bills and delivers new gasoline at-

tributes with them to the Engine state.

3 � 4 If the iStationListObserver pointer is not equal to NULLthen

the Gas Station View is active and has to be updated. If so,

the Engine calls CGpcsContainer::HandleUpdateL() . This,

in turn, calls CGpcsEngine::UpdateStationArrayL() .

5 � 6 These two messages are similar to the previous ones, but they

deal with the Gasoline Attributes View.

Having been asked to exit, the application �rst saves all collected data to a �le

associated with it. The data is loading back into the application each time the user

launches it. While restoring the data, outdated gasoline attributes are dropped and

thus only the fresh information is provided to the user at the start time. While running,

however, the application does not care about their expiration time. This simpli�es the

implementation without essential costs because in our case there is no exact de�nition

33

of the threshold when the data can be considered outdated. It is clear that the value

of the threshold depends on the frequency of price changes at gas stations. In order

to determine the approximate value, further research is required. Anyway it should

remain the same for all participants in order to speed up the communication between

mobile devices.

5.5 Conclusion

In this chapter Gasoline Price Comparison System, its purpose, application scenario,

user interface, as well as design and implementation have been considered. GPCS

supports two languages, English and Finnish. It is split into two parts, the Engine and

the UI, to aid maintainability and �exibility. A scenario for communication between

two mobile devices with a practical example and interactions between the Engine and

the UI parts have been presented as well.

Gasoline Price Comparison System has been developed as a prototype to illustrate

the feasibility of mobile encounter networks applications. In GPCS, data originates at

multiple sources and when these individual data pieces are collected, a complete list of

gasoline prices will be obtained.

34

6 Conclusions and Future Work

Di�erent existing mobile applications, which belong to either SPA or DSA, or both,

have been brie�y reviewed in Chapter 2. These applications have appeared in the past

few years because of the wide-spread use of short-range radio technologies in today's

mobile devices. DSA form a new class of mobile networks, called mobile encounter

networks, whereas SPA, being a more restricted group of mobile applications, do not

strictly suit to the mobile encounter network architecture.

Chapter 3 introduces mobile encounter networks, which emerge when two mobile

devices come across each other and establish a temporary connection between them

using a common short-range radio technology. Local information exchanges between

mobile devices result in a broadcast di�usion of information to other users of the net-

work with a delay. Compared to ad hoc networks, simpler algorithms can be used, and

compared to cellular network-based MP2P applications, no infrastructure is needed.

Section 3.5 presents �ve application areas where mobile encounter networks could be

used.

Since applications in mobile encounter networks interact with each other through

mobile communication technologies, such as Bluetooth [4] and 802.11 WLAN [16], it

is reasonable to create a middleware module that hides the details of each of them

providing application developers with technology-independent higher-level functions

for communication in these networks. Chapter 4 considers such middleware, called

BlueCheese, which has been developed in a student software project at the University

of Jyväskylä. In the current implementation of the middleware, Bluetooth radio tech-

nology was chosen as a transmission method because of its availability in the majority

of Symbian OS mobile devices, although 802.11 WLAN also might be used in future

releases.

Chapter 5 describes the UI application, called Gasoline Price Comparison System,

which has been developed in the scope of this thesis as a prototype to illustrate the

feasibility of mobile encounter networks applications. In GPCS, data originates at mul-

tiple sources and when these individual data pieces are collected, a complete list of gas

prices will be obtained. GPCS runs on mobile devices with Symbian OS and together

with BlueCheese middleware, it might be used for studying the network characteristics

of the system. Section 5.4 presents a scenario for communication between two mobile

devices with a practical example. Finally Appendix A reports the functionality of

35

GPCS engine's classes expressed in UML notation as well as the header �les in which

these classes are de�ned.

The future work concentrates on modelling and simulation of mobile information

di�usion in mobile encounter networks and �eld testing of GPCS and BlueCheese using

Bluetooth-enabled mobile devices.

36

7 Bibliography

[1] Academic Free License 2.0. http://www.opensource.org/licenses/afl-2.0.

php.

[2] Andersen F.-U., de Meer H., Dedinski I., Kappler C., Mäder A., Oberender J.

and Tutschku K., An Architecture Concept for Mobile P2P File Sharing Services,

Workshop Proceedings of Informatik 2004 - Algorithms and Protocols for E�cient

Peer-to-Peer Applications, pp. 229�233, 2004.

[3] BEDD Community. http://www.bedd.com/.

[4] Bluetooth Consortium. http://www.bluetooth.org/.

[5] BuZZone Application. http://www.buzzone.net/.

[6] Coulouris G. Distributed Systems: Concepts and Design. Addision-Wesley, 2001.

[7] Developer Platform 2.0 for Series 60: Application Framework Handbook. Available

at http://www.forum.nokia.com/.

[8] Developer Platform 2.0 for Series 60: Designing C++ Applications. Available at

http://www.forum.nokia.com/.

[9] Ding G. and Bhargava B., Peer-to-peer File-sharing over Mobile Ad hoc Networks,

Proceedings of IEEE Annual Conference on Pervasive Computing and Communi-

cations Workshops, pp. 104�109, March 2004.

[10] Dreamlove Application. http://www.dreamlove.it/.

[11] Edwards L., Barker R., and the Sta� of EMCC Software Ltd. Developing Series 60

Application: A Guide for Symbian OS C++ Developers. Addison-Wesley, 2004.

[12] Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns. Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[13] Garg N., Shao Y., Ziskind E., Sobti S., Zheng F., Lai J., Krishnamurthy A. and

Wand R., A Peer-to-Peer Mobile Storage System, Technical Report, TR-664-02,

Computer Science Department, Princeton University, October 2002.

37

http://www.opensource.org/licenses/afl-2.0.php
http://www.opensource.org/licenses/afl-2.0.php
http://www.bedd.com/
http://www.bluetooth.org/
http://www.buzzone.net/
http://www.forum.nokia.com/
http://www.forum.nokia.com/
http://www.dreamlove.it/

[14] Goodman D., Borrás J., Mandayam N. and Yates R., INFOSTATIONS: A New

SystemModel for Data and Messaging Services, Proceedings of the IEEE Vehicular

Technology Conference '97, vol. 2, pp. 969�973, Phoenix, AZ, May 1997.

[15] Helal S., Desai N., Verma V. and Lee C., Konark. A Service Discovery and Delivery

Protocol for Ad-Hoc Networks, Proceedings of the IEEE Wireless Communication

and Networking Conference (WCNC 2002), New Orleans, LA, March 2003.

[16] IEEE 802.11 Wireless Local Area Networks - The Working Group for WLAN

Standards. http://grouper.ieee.org/groups/802/11/.

[17] Kato T., Ishikawa N., Sumino H., Hjelm J., Yu Y. and Murakami S., A Plat-

form and Applications for Mobile Peer-to-Peer Communications, http://www.

research.att.com/~rjana/Takeshi_Kato.pdf.

[18] Klemm A., Lindemann C. and Waldhorst O., A Special-Purpose Peer-to-Peer File

Sharing System for Mobile Ad Hoc Networks, Proceedings of IEEE Semiannual

Vehicular Technology Conference (VTC2003-Fall), Orlando, FL, October 2003.

[19] Kurhinen J. and Vuori J., Information Di�usion in a Single-Hop Mobile Peer-

to-Peer Network, Proceedings of the 10th IEEE Symposium on Computers and

Communications, ISCC 2005, Cartagena, Spain, 2005.

[20] Kurhinen J. and Vuori J., MP2P Network as an Information Di�usion Channel,

Proceedings of the 62nd IEEE Vehicular Technology Conference, VTC Fall 05,

Dallas, USA, 2005.

[21] Marossy K., Csucs G., Bakos B., Farkas L. and Nurminen J. Peer-to-peer content

sharing in wireless networks. The 15th IEEE International Symposium on Per-

sonal, Indoor and Mobile Radio Communications (PIMRC 2004). Volume 1, pp.

109�114. 5�8 Sept. 2004.

[22] MobiLuck Application. http://mobiluck.com/.

[23] MoPeDi Project Homepage. http://kotka.it.jyu.fi/mopedi/.

[24] MoPeDi Project � Software Design. http://kotka.it.jyu.fi/mopedi/docs/

documents/SoftwareDesign.pdf.

[25] Nokia Flier Application. Available at http://europe.nokia.com/nokia/0,

,58683,00.html.

[26] Nokia Sensor Application. http://www.nokia.com/sensor.

38

http://grouper.ieee.org/groups/802/11/
http://www.research.att.com/~rjana/Takeshi_Kato.pdf
http://www.research.att.com/~rjana/Takeshi_Kato.pdf
http://mobiluck.com/
http://kotka.it.jyu.fi/mopedi/
http://kotka.it.jyu.fi/mopedi/docs/documents/SoftwareDesign.pdf
http://kotka.it.jyu.fi/mopedi/docs/documents/SoftwareDesign.pdf
http://europe.nokia.com/nokia/0,,58683,00.html
http://europe.nokia.com/nokia/0,,58683,00.html
http://www.nokia.com/sensor

[27] Object Management Group. UML Notation Guide, OMG Uni�ed Modeling Lan-

guage Speci�cation v. 1.5, pp. 3-1�3-176, 2003.

[28] Papadopouli M. and Schulzrinne H., E�ects of power conservation, wireless cover-

age and cooperation on data dissemination among mobile devices, Proceedings of

the 2nd ACM international symposium on Mobile ad hoc networking & computing

(MobiHoc 2001), Long Beach, California, October 4�5, 2001.

[29] Charles E. Perkins, editor. Ad Hoc Networking. Addison-Wesley, 2001.

[30] Persson, P. and Jung, Y. Nokia Sensor: From Research to Product, Conference

on Designing for User eXperience (DUX), San Francisco, CA, Nov 3-5, 2005.

[31] Proxidating Application. http://www.proxidating.com/.

[32] RSS 2.0 Speci�cation. http://blogs.law.harvard.edu/tech/rss/.

[33] Series 60 Platform. http://www.series60.com/.

[34] Tasker M., Dixon J., Shackman M., Richardson T. and Forrest J. Professional

Symbian Programming: Mobile Solutions on the EPOC Platform. Wrox Press,

2000.

[35] Terziyan V., Collaborative Filtering, Lecture Notes, http://www.cs.jyu.fi/ai/

vagan/Collaborative_Filtering.ppt.

[36] Volovikov O., Vapa M., Weber M., Kotilainen N. and Vuori J. Mobile Encounter

Networks and Their Applications. The 17th IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications (PIMRC 2006), In submis-

sion, Sept. 2006.

[37] Wolfson O., Xu B. and Sistla P., An Economic Model for Resource Exchange

in Mobile Peer to Peer Networks, The 16th International Conference on Scienti�c

and Statistical Database Management (SSDBM 2004), 21�23 June 2004, Santorini

Island, Greece.

[38] Xue G.-T., Li M.-L., Deng Q.-N. and You J.-Y., Stable Group Model in Mobile

Peer-to-Peer Media Streaming System, The 1st IEEE International Conference

on Mobile Ad-hoc and Sensor Systems, October 24�27, 2004, Fort Lauderdale,

Florida, USA.

39

http://www.proxidating.com/
http://blogs.law.harvard.edu/tech/rss/
http://www.series60.com/
http://www.cs.jyu.fi/ai/vagan/Collaborative_Filtering.ppt
http://www.cs.jyu.fi/ai/vagan/Collaborative_Filtering.ppt

A Classes Functionality

As mentioned previously in Section 5.4, the application is split into two parts, the UI

and the Engine. The UI part implements the standard set of Symbian OS application

classes. Their details are omitted in this work due to space limit. Instead, attention

is given to the functionality of the Engine part classes. The following table shows the

header �les in which the classes are de�ned:

Class De�nition Description

MGpcsObserver GpcsEngine.h de�ned interface to observe engine state

CGpcsEngine GpcsEngine.h de�ned interface for engine

CLocationList EngineUtil.h de�ned interface for gas station location list

TLocation EngineUtil.h de�ned interface for gas station location

CGasolineList EngineUtil.h de�ned interface for gasoline attributes list

TGasoline EngineUtil.h de�ned interface for gasoline attributes

MProfileObserver SettingsData.h de�ned interface to observe pro�le state

CProfileList SettingsData.h de�ned interface for pro�le list

CSettingsData SettingsData.h de�ned interface for pro�le settings

Table A.1: GPCS Engine Classes

The classes as well as their attributes and methods are presented in this appendix

in detail. The parameters and the return values of the methods are explained. The

methods inside the boxes are written as they were de�ned in the header �les of the

software. The classes are expressed in UML notation [27]. Their names use the initial

letter (M, C, R or T) that comes from the Symbian OS coding conventions [11, 34].

A.1 Class MGpcsObserver

The MGpcsObserver class de�nes an interface with one pure virtual function to im-

plement an observer mechanism as depicted in Figure 5.9.

MGpcsObserver

+HandleUpdateL()

40

The class consists of nothing but the following method:

virtual void HandleUpdateL(TUint aIndex) = 0

Noti�es about modi�cations in the Engine state.

Parameters:

aIndex [in] the index number of the modi�ed item.

A.2 Class CGpcsEngine

The CGpcsEngine class represents the Engine in the UI. It is derived from a standard

Symbian OS class, CBase, a base class for all classes to be instantiated on the heap. It

implements a MProfileObserver interface to observe the state of the active pro�le.

CGpcsEngine

-iLocationList:CLocationList *
-iGasolineList:CGasolineList *
-iProfileList:CProfileList *
-iStationListObserver:MGpcsObserver *
-iDetailsListObserver:MGpcsObserver *
-iActiveIndices:RArray<TUint>

-iLabels:HBufC16 * [4]

-tmpBillCount:TInt=0

+NewL()

+NewLC()

+∼CGpcsEngine()

+ActiveProfileChangedL()

+SetStationListObserver()

+SetDetailsListObserver()

+UpdateStationArrayL()

+UpdateDetailsArrayL()

+ProfileList()

+tmpPayBillL()

+StoreL()

+RestoreL()

-ExternalizeL()

-InternalizeL()

-ConstructL()

-CGpcsEngine()

41

The class consists of the following attributes and methods:

• iLocationList is a pointer to the gas station location list;

• iGasolineList is a pointer to the gasoline attributes list;

• iProfileList is a pointer to the pro�le list;

• iStationListObserver is a pointer used to notify the Gas Stations View about

modi�cations in the Engine state;

• iDetailsListObserver is a pointer used to notify the Gasoline Attributes View

about modi�cations in the Engine state;

• iActiveIndices stores indices of the items to be shown to the user based on

the active pro�le settings;

• iLabels stores the language-dependent labels used in the application;

• tmpBillCount is a counter used to emulate paying bills.

static CGpcsEngine * NewL()

Operates as a factory function � a static function that acts as a constructor.

Returns a pointer to the new object.

static CGpcsEngine * NewLC()

Operates like NewL() but does not pop the object from the cleanup stack before

returning.

Returns a pointer to the new object.

virtual ∼CGpcsEngine()

Destructor. Destroys the allocated memory.

virtual void ActiveProfileChangedL()

Updates iActiveIndices based on the active pro�le. This function implements

the interface MProfileObserver::ActiveProfileChangedL() .

42

void SetStationListObserver(MGpcsObserver * aObserver)

Sets a new value for iStationListObserver .

Parameters:

aObserver [in] a new value of iStationListObserver .

void SetDetailsListObserver(MGpcsObserver * aObserver)

Sets a new value for iDetailsListObserver .

Parameters:

aObserver [in] a new value of iDetailsListObserver .

void UpdateStationArrayL(CDesCArray * aItemArray) const

Updates the Gas Stations View based on the new Engine state. It is typically called

by the CGpcsContainer in the scope of the HandleUpdateL() method.

Parameters:

aItemArray [in, out] the array to be modi�ed.

TInt UpdateDetailsArrayL(CDesCArray * aItemArray, TDes& aTitle,

TUint& aTotal, TUint aIndex) const

Updates the Gasoline Attributes View based on the new Engine state. It is typically

called by the CGpcsContainer2 in the scope of the HandleUpdateL() method.

Parameters:

aItemArray [in, out] the array to be modi�ed;

aTitle [out] the gas station location of the selected item used as the

application title;

aTotal [out] the amount of the �ltered items in the list;

aIndex [in] the index number of the selected item.

Returns the index number of brand of the selected item.

inline CProfileList& ProfileList()

Returns a reference to the member variable iProfileList .

void tmpPayBillL()

43

Emulates paying bills and delivers new gasoline attributes to the Engine state.

TStreamId StoreL(CStreamStore& aStore) const

Creates a stream within the supplied �le. Calls the ExternalizeL() method of

the class.

Parameters:

aStore [in, out] the stream store to which data is saved.

Returns the stream identi�er.

void RestoreL(const CStreamStore& aStore, const TStreamId&

aStreamId)

Creates and opens a stream using the supplied �le and stream identi�er. Calls the

InternalizeL() method of the class.

Parameters:

aStore [in] the stream store containing data;

aStreamId [in] the stream identi�er.

void ExternalizeL(RWriteStream& aStream) const

Writes the class state to the stream.

Parameters:

aStream [in, out] the stream to which the object is written.

void InternalizeL(RReadStream& aStream)

Reads the class state from the stream.

Parameters:

aStream [in, out] the stream from which the object is read.

void ConstructL()

Second-phase constructor. Allocates memory required for the object.

CGpcsEngine()

Constructor. Creates the object and initiates member variables with default values.

44

A.3 Class CLocationList

The CLocationList class is responsible for manipulating data of the gas station lo-

cations. It is derived from the standard Symbian OS template class, CArrayPtrFlat ,

inheriting the behavior of �at arrays where TLocation is speci�ed as a template ar-

gument.

CLocationList

-iMajorArray:CDesC16Array *
-iMinorArray:CDesC16Array *

+NewL()

+∼CLocationList()

+GetIndexL()

+GetMajor()

+GetMinor()

+ExternalizeL()

+InternalizeL()

-ConstructL()

-CLocationList()

-FindLocationIndex()

-MakeId()

-GetIndexL()

-ExternalizeL()

-InternalizeL()

The class consists of the following attributes and methods:

• iMajorArray stores the major parts of location;

• iMajorArray stores the minor parts of location.

static CLocationList * NewL(CCoeEnv& aCoeEnv)

Operates as a factory function � a static function that acts as a constructor.

Parameters:

aCoeEnv [in] the control environment.

Returns a pointer to the new object.

virtual ∼CLocationList()

45

Destructor. Destroys the allocated memory.

TUint GetIndexL(const TDesC& aMajor, const TDesC& aMinor)

Gets an index number of the gas station location in the array with particular major

and minor parts. If the item is not found, a new one is created.

Parameters:

aMajor [in] the major part of the gas station location;

aMinor [in] the minor part of the gas station location.

Returns an index number of the gas station location in the array.

const TPtrC GetMajor(TInt aIndex) const

Parameters:

aIndex [in] an index number of the gas station location in the array.

Returns a non-modi�able pointer descriptor to the major part of the gas station

location.

const TPtrC GetMinor(TInt aIndex) const

Parameters:

aIndex [in] an index number of the gas station location in the array.

Returns a non-modi�able pointer descriptor to the minor part of the gas station

location.

void ExternalizeL(RWriteStream& aStream) const

Writes the class state to the stream.

Parameters:

aStream [in, out] the stream to which the object is written.

void InternalizeL(RReadStream& aStream)

Reads the class state from the stream.

Parameters:

aStream [in, out] the stream from which the object is read.

46

void ConstructL(CCoeEnv& aCoeEnv)

Second-phase constructor. Allocates memory required for the object.

Parameters:

aCoeEnv [in] the control environment.

CLocationList()

Constructor. Creates the object and initiates member variables with default values.

TInt FindLocationIndex(TUint aId) const

Finds an index number of the gas station location in the array by location id. If

the item is not found, returns -1.

Parameters:

aId [in] the gas station location id.

Returns an index number of the gas station location in the array.

TUint MakeId(const TDesC& aMajor, const TDesC& aMinor) const

Parameters:

aMajor [in] the major part of the gas station location;

aMinor [in] the minor part of the gas station location.

Returns the gas station location id.

TUint GetIndexL(CDesC16Array& aArray, const TDesC& aItem) const

Utility function. Used to �nd the particular item in the speci�ed array. If the item

is not found and not empty, it is appended to the end of the array.

Parameters:

aArray [in, out] the major part of the gas station location;

aItem [in] the minor part of the gas station location.

Returns an index number of the particular item in the speci�ed array.

void ExternalizeL(const CDesC16Array& aArray, RWriteStream&

aStream, TInt aFrom) const

Utility function. Writes the array state into the stream.

47

Parameters:

aArray [in] the array to be written into the stream;

aStream [in, out] the stream to which the array is written;

aFrom [in] the start position.

void InternalizeL(CDesC16Array& aArray, RReadStream& aStream,

TInt aFrom)

Utility function. Reads the array state from the stream.

Parameters:

aArray [in, out] the array to be read from the stream;

aStream [in, out] the stream from which the array is read;

aFrom [in] the start position.

A.4 Class TLocation

The TLocation class stores data of a particular gas station location. CLocationList

is declared as a friend class by TLocation so that CLocationList methods could

have access to the private attributes of TLocation .

TLocation

-iLocationId:TUint

-iMajorIndex:TUint

-iMinorIndex:TUint

-ExternalizeL()

-InternalizeL()

The class consists of the following attributes and methods:

• iLocationId the hash value obtained by hashing the major and minor parts of

the location (called location id);

• iMajorIndex an index number of the location major part;

• iMinorIndex an index number of the location minor part.

void ExternalizeL(RWriteStream& aStream) const

48

Writes the class state to the stream.

Parameters:

aStream [in, out] the stream to which the object is written.

void InternalizeL(RReadStream& aStream)

Reads the class state from the stream.

Parameters:

aStream [in, out] the stream from which the object is read.

A.5 Class CGasolineList

The CGasolineList class is responsible for manipulating data of the gasoline at-

tributes. It is derived from the standard Symbian OS template class, CArrayPtrFlat ,

inheriting the behavior of �at arrays where TGasoline is speci�ed as a template ar-

gument.

CGasolineList

-iTypeArray:CDesC16Array *
-iBrandArray:CDesC16Array *
-iNextTime:TTime

-iRangeId:TInt

+NewL()

+∼CGasolineList()

+AddL()

+GetTime()

+GetPrice()

+GetType()

+GetBrand()

+ExternalizeL()

+InternalizeL()

-ConstructL()

-CGasolineList()

-FindIndex()

-GetPrice()

-Now()

The class consists of the following attributes and methods:

49

• iTypeArray stores the gasoline type alternatives;

• iBrandArray stores the gasoline brand alternatives;

• iNextTime stores the current base time;

• iRangeId stores the current range id.

static CGasolineList * NewL(CCoeEnv& aCoeEnv, const TTime&

aCurTime)

Operates as a factory function � a static function that acts as a constructor.

Parameters:

aCoeEnv [in] the control environment;

aCurTime [in] the current time.

Returns a pointer to the new object.

virtual ∼CGasolineList()

Destructor. Destroys the allocated memory.

TUint AddL(TUint aIndex, const TDesC& aType, const TDesC& aBrand,

const TDesC& aPrice)

Adds new gasoline attributes. If the item already exists, it will be overwritten by

a new price (and time).

Parameters:

aIndex [in] an index number of the gas station location in the member vari-

able CGpcsEngine::iLocationList ;

aType [in] a non-modi�able descriptor to the gasoline type;

aBrand [in] a non-modi�able descriptor to the gasoline brand;

aPrice [in] a non-modi�able descriptor to the gasoline price.

Returns an index number of the gasoline attributes in the array.

void GetTime(const TGasoline& aGasoline, TDes& aTime) const

Renders a time value as text.

50

Parameters:

aGasoline [in] an object that contains the time value as number;

aTime [out] on return, contains the time value as text.

void GetPrice(const TGasoline& aGasoline, TDes& aPrice) const

Renders a price value as text.

Parameters:

aGasoline [in] an object that contains the price value as number;

aPrice [out] on return, contains the price value as text.

const TPtrC GetType(const TGasoline& aGasoline) const

Gets a non-modi�able pointer descriptor to the gasoline type.

Parameters:

aGasoline [in] an object that contains the index number of the gasoline type.

Returns a non-modi�able descriptor to the gasoline type.

const TPtrC GetBrand(const TGasoline& aGasoline) const

Gets a non-modi�able pointer descriptor to the gasoline brand.

Parameters:

aGasoline [in] an object that contains the index number of the gasoline

brand.
Returns a non-modi�able descriptor to the gasoline brand.

void ExternalizeL(RWriteStream& aStream) const

Writes the class state to the stream.

Parameters:

aStream [in, out] the stream to which the object is written.

void InternalizeL(RReadStream& aStream)

Reads the class state from the stream.

Parameters:

aStream [in, out] the stream from which the object is read.

51

void ConstructL(CCoeEnv& aCoeEnv)

Second-phase constructor. Allocates memory required for the object.

Parameters:

aCoeEnv [in] the control environment.

CGasolineList(const TTime& aCurTime)

Constructor. Creates the object and initiates member variables with default values.

Parameters:

aCurTime [in] the current time.

TUint FindIndex(CDesC16Array * aArray, const TDesC& aItem) const

Utility function. Finds an index number of the item in the array. If the item is not

found, it returns zero, which means the item is unknown.

Parameters:

aArray [in] an array where to �nd;

aItem [in] an item to be found.

Returns an index number of the item in the array.

TUint GetPrice(const TDesC& aPrice) const

Converts a price value presented as text into number.

Parameters:

aPrice [in] a descriptor to a price value.

Returns a price value as number.

TInt Now() const

Returns the number of minutes passed since the base time.

A.6 Class TGasoline

The TGasoline class stores data of particular gasoline attributes. CGasolineList

and CGpcsEngine are declared as friend classes by TGasoline so that their methods

could have access to the private attributes of TGasoline .

52

TGasoline

-iGasolineId:TUint32

-iGasolineVal:TUint32

-ExternalizeL()

-InternalizeL()

The class consists of the following attributes and methods:

• iGasolineId gasoline id that consists of location, brand and type due to a binary

structure;

• iGasolineVal gasoline value that consists of time and price due to a binary

structure.

void ExternalizeL(RWriteStream& aStream) const

Writes the class state to the stream.

Parameters:

aStream [in, out] the stream to which the object is written.

void InternalizeL(RReadStream& aStream)

Reads the class state from the stream.

Parameters:

aStream [in, out] the stream from which the object is read.

A.7 Class MPro�leObserver

The MProfileObserver class de�nes an interface with one pure virtual function to

implement an observer mechanism.

MProfileObserver

+ActiveProfileChangedL()

The class consists of nothing but the following method:

virtual void ActiveProfileChangedL() = 0

Noti�es about modi�cations in the active pro�le.

53

A.8 Class CPro�leList

The CProfileList class is responsible for manipulating data of the user-de�ned pro-

�les. It is derived from a standard Symbian OS template class, CArrayPtrFlat ,

inheriting the behavior of �at arrays where CSettingsData is speci�ed as a template

argument.

CProfileList

-iObserver:MProfileObserver&

-iDefault:HBufC *
-iCurrent:TInt

-iActive:TInt

-iCount:TInt

-iActiveChanged:TBool

+NewL()

+∼CProfileList()

+ExternalizeL()

+InternalizeL()

+ChangedNotifyL()

+AppendNewL()

+Delete()

+CurrentProfileChanged()

+Current()

+Active()

+SetCurrent()

+SetCurrentNext()

+SetCurrentPrev()

+SetActive()

+Count()

+GetCurrent()

+GetActive()

- MdcaCount()

- MdcaPoint()

-ConstructL()

-CProfileList()

The class consists of the following attributes and methods:

• iObserver is a reference used to notify about modi�cations in the active pro�le.

This is set by the constructor;

54

• iDefault stores the language-dependent default pro�le name;

• iCurrent stores the index number of the selected pro�le;

• iActive stores the index number of the activated pro�le;

• iCount stores the number of user-de�ned pro�les;

• iActiveChanged is a �ag used to check if the active pro�le has been changed.

static CProfileList * NewL(CCoeEnv& aCoeEnv, MProfileObserver&

aObserver)

Operates as a factory function � a static function that acts as a constructor.

Parameters:

aCoeEnv [in] the control environment;

aObserver [in] the value of iObserver .

Returns a pointer to the new object.

virtual ∼CProfileList()

Destructor. Destroys the allocated memory.

void ExternalizeL(RWriteStream& aStream) const

Writes the class state to the stream.

Parameters:

aStream [in, out] the stream to which the object is written.

void InternalizeL(RReadStream& aStream)

Reads the class state from the stream.

Parameters:

aStream [in, out] the stream from which the object is read.

void ChangedNotifyL()

If iActiveChanged equals to ETrue then unsets it and noti�es the observer that

the active pro�le has been changed.

55

void AppendNewL()

Appends a new pro�le onto the end of the array.

TBool Delete(TInt aIndex)

Deletes pro�les by position.

Parameters:

aIndex [in] the position within the array.

Returns ETrue if the speci�ed pro�le is not active, otherwise EFalse.

inline void CurrentProfileChanged()

Sets iActiveChanged to ETrue if iCurrent equals iActive .

inline CSettingsData& Current()

Returns the current pro�le.

inline CSettingsData& Active()

Returns the active pro�le.

inline void SetCurrent(TInt aIndex)

Sets the current pro�le by position.

Parameters:

aIndex [in] the position within the array.

inline void SetCurrentNext()

Sets the current pro�le to the next.

inline void SetCurrentPrev()

Sets the current pro�le to the previous.

inline void SetActive(TInt aIndex)

Activates pro�les by position and sets iActiveChanged to ETrue .

56

Parameters:

aIndex [in] the position within the array.

inline TInt Count() const

Returns the value of iCount .

inline TInt GetCurrent() const

Returns the value of iCurrent .

inline TInt GetActive() const

Returns the value of iActive .

virtual TInt MdcaCount() const

Returns the number of user-de�ned pro�les in the array. The function implements

the interface MDesCArray::MdcaCount() .

Returns the number of user de�ned pro�les.

virtual TPtrC MdcaPoint(TInt aIndex) const

Indexes into the array of user-de�ned pro�les. The function implements the inter-

face MDesCArray::MdcaPoint() .

Parameters:

aIndex [in] The position of the pro�le within the array. The position is

relative to zero.
Returns a non-modi�able pointer descriptor representing the descriptor element

located at position aIndex within the array.

void ConstructL(CCoeEnv& aCoeEnv)

Second-phase constructor. Allocates memory required for the object.

Parameters:

aCoeEnv [in] the control environment.

CProfileList(TInt aGranularity, MProfileObserver &aObserver)

57

Constructor. Creates the object and initiates member variables with default values.

Parameters:

aGranularity [in] the granularity of the array;

aObserver [in] the value of iObserver .

A.9 Class CSettingsData

The CSettingsData class stores settings of a particular pro�le. It is derived directly

from the CBase class.

CSettingsData

-iBrandArray:CArrayFixFlat<TInt>

-iTypeArray:CArrayFixFlat<TInt>

-iBuf:TUint16[EMaxBufLen+1]

-iText:TPtr

+NewLC()

+∼CSettingsData()

+ExternalizeL()

+InternalizeL()

+PtrC()

+Text()

+BrandArray()

+TypeArray()

-CSettingsData()

-ConstructL()

The class consists of the following attributes and methods:

• iBrandArray stores gasoline brand alternatives of the pro�le;

• iTypeArray stores gasoline type alternatives of the pro�le;

• iBuf stores the pro�le name with a column separator;

• iText is a modi�able pointer descriptor to the pro�le name.

static CSettingsData * NewLC(const TDesC& aDefault = KNullDesC)

Operates as a factory function � a static function that acts as a constructor.

58

Parameters:

aDefault [in] the default pro�le name.

Returns a pointer to the new object.

virtual ∼CSettingsData()

Destructor. Destroys the allocated memory.

void ExternalizeL(RWriteStream& aStream) const

Writes the class state to the stream.

Parameters:

aStream [in, out] the stream to which the object is written.

void InternalizeL(RReadStream& aStream)

Reads the class state from the stream.

Parameters:

aStream [in, out] the stream from which the object is read.

inline TPtrC PtrC() const

Returns a non-modi�able pointer descriptor to the bu�er which contains a pro�le

name with the column separator.

inline TPtr& Text()

Returns a modi�able pointer descriptor to the bu�er which contains a pro�le

name.

inline CArrayFix<TInt>& BrandArray()

Returns gasoline brand alternatives of the pro�le.

inline CArrayFix<TInt>& TypeArray()

Returns gasoline type alternatives of the pro�le.

59

CSettingsData()

Constructor. Creates the object and initiates member variables with default values.

void ConstructL(const TDesC& aDefault)

Second-phase constructor. Allocates memory required for the object.

Parameters:

aDefault [in] the default pro�le name.

60

	Preface
	Glossary
	Contents
	Introduction
	Existing Applications
	Introduction
	Analysis and Comparison
	Applications Overview
	Nokia Sensor
	Nokia Flier
	BEDD
	Proxidating
	MobiLuck
	BuZZone

	Conclusion

	Mobile Encounter Networks
	Introduction
	Definition and Description
	Information Diffusion
	Benefits and Shortcomings
	Feasible Application Areas
	Grocery Store Price Service
	Dating Service
	Joke Service
	Event Service
	Newspaper Service

	Conclusion

	BlueCheese Middleware
	Introduction
	Application and Middleware
	Purpose and Functionality
	GSM-based Location Service
	BlueCheese Protocol Stack
	Conclusion

	Gasoline Price Comparison System
	Introduction
	Application Scenario
	User Interface
	Gas Stations View
	Gasoline Attributes View
	Profiles View
	Profile Settings View

	Design and Implementation
	Language Localization
	Splitting the UI and the Engine
	GPCS UI
	GPCS Engine
	Communication Scenario
	Updating Views

	Conclusion

	Conclusions and Future Work
	Bibliography
	Classes Functionality
	Class MGpcsObserver
	Class CGpcsEngine
	Class CLocationList
	Class TLocation
	Class CGasolineList
	Class TGasoline
	Class MProfileObserver
	Class CProfileList
	Class CSettingsData

