

P2PStudio – Monitoring, Controlling and Visualization Tool
for Peer-to-Peer Networks Research

Niko Kotilainen, Mikko Vapa, Annemari Auvinen, Matthieu Weber, Jarkko Vuori
Department of Mathematical Information Technology

University of Jyväskylä, Finland
firstname.lastname@jyu.fi

ABSTRACT
Peer-to-Peer Studio has been developed as a monitoring, controlling
and visualization tool for peer-to-peer networks. It uses a centralized
architecture to gather events from a peer-to-peer network and can be
used to visualize network topology and to send different commands
to individual peer-to-peer nodes. The tool has been used with
Chedar Peer-to-Peer network to study the behavior of different peer-
to-peer resource discovery and topology management algorithms
and for visualizing the results of NeuroSearch resource discovery
algorithm produced by the Peer-to-Peer Realm network simulator.
This paper presents the features, the architecture and the protocols
of Peer-to-Peer Studio and the experience gained from using the tool
for peer-to-peer networks research.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms: Measurement, Performance.

Keywords
peer-to-peer; P2PStudio; monitoring tool; research infrastructure.

1. INTRODUCTION
Peer-to-Peer (P2P) networks consist of a set of peer nodes. Each
peer node makes decisions on where to connect and where to
forward resource queries resulting in a complex self-organizing
network. Studying how different algorithms are performing requires
collecting data from the entire P2P network to obtain a global view.
In P2P networks research people have used crawlers [5,9] to collect
data locally available for some peer nodes. This approach however
is only able to gather a portion of the P2P network’s behavior,
because some of the peers might not accept any new connections
requested by the crawlers. Also, the crawlers can only gather
information, which is accessible by the P2P protocol and thus they
do not have direct means to control the peer’s actions.

In our approach, we use a centralized server to contact peers in the
P2P network and to set filters to the peers for what events the peers
need to report back to the server. This allows measuring different
properties from the P2P network extensively and globally. The

graphical user interface presents the collected data visually thus
making the interpretation easier compared to reading plain text log
files. In contrast to crawlers, we note that our work is the first
attempt to create a P2P research environment, which provides strict
control mechanisms and accurate measurements for studying the
behavior of different P2P algorithms.

To monitor the events of a P2P network a specific monitoring
interface needs to be implemented in the peer nodes. This interface
is used for setting different event logging options and for accepting
incoming connections for data delivery from the centralized server.
However, in presence of a large P2P network the centralized server
can have lots of connections to manage and presents a potential
performance bottleneck in our approach compared to local gathering
of data done by crawlers. This architecture can however be scaled
up by using multiple servers as is common in studies with crawlers
[9].

The rest of the paper is organized as follows. Section 2 presents
P2PStudio, its features, architecture and protocols. Section 3
describes how P2PStudio has been used in peer-to-peer networks
research for studying the performance of peer-to-peer resource
discovery and topology management algorithms. Conclusions and
future work are discussed in Section 4.

2. PEER-TO-PEER STUDIO
The Cheese Factory –project [3] has implemented a Java-based
peer-to-peer computing platform called Chedar [1]. Chedar can be
used to build a network of workstations where each node provides
and consumes resources such as computing power, files and devices.
Currently, Chedar is used as a middleware for P2P Distributed
Computing applications [7]. Chedar has also been extended to
support mobile devices [8]. In order to test and monitor the Chedar
network there was a need for a tool that enables to remotely control
and monitor each peer and workstation in a centralized way. By
executing the Guardian student project [4], the first version of Peer-
to-Peer Studio was developed in 2002.

ServerUser
Interface

Chedar
node

Chedar
node

Chedar
node

Chedar
node

Peer-to-Peer Studio

Figure 1. Components of Peer-to-Peer Studio.

P2PStudio is Java-based and it is divided into two separate
programs as shown in Fig. 1: the user interface (UI) and the
server. The graphical UI connects to the server program and uses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PM2HW2N'2006, October 6, 2006, Torremolinos, Malaga, Spain.
Copyright 2006 ACM 1-59593-502-9/06/0010...$5.00.

it to carry out the commands entered by the user. The server
program takes care of all of the communication between the UI
and Chedar nodes. It also manages the data sent from Chedar
nodes. Dividing the application into two programs allows mobility
of the UI from the dedicated hardware of the server. For example
the server might have privileges to connect to Chedar nodes
through firewalls and an UI residing on a laptop only needs to be
able to connect to the server.

UI communicates with the server, sends requests to Chedar nodes,
displays data from the server to the user e.g., by visualizing the
network topology and showing diagrams. The UI also allows the
management of Chedar nodes. Server forwards the commands sent
by the UI, gathers information from the Chedar network and passes
on requested data to the UI.

2.1 User Interface
The user interface draws a logical topology of the monitored
network as shown in Fig. 2. From the zoomable topology view the
user can select nodes and for example check their values, command
queries to be sent and modify the resources owned by the nodes.
Nodes can also be grouped together to ease the execution of a

certain action to multiple nodes. Information on the last executed
query is also shown in the topology view. The topology is generated
using the WTS Veivi component from WTS Networks [12]. The
component creates a visualization of network topology from a set of
nodes and links optimized to minimum number of overlapping links.
The topology is refreshed whenever the user desires or after a set
interval.

Another feature of the UI is to show graphs of the monitoring data
as shown in Fig. 3. Currently, the only graph implemented is the
neighborhood distribution, but other graphs are relatively easy to be
plugged in. Graphs are formed by combining multiple events into a
single value, like in the neighborhood distribution, where individual
neighbor amount notifications are counted and the frequency of
certain value creates one data point in the graph. Graphs can be
zoomed and shown also in a logarithmic scale.

The log feature of the UI allows the user to keep track of the Chedar
network's actions almost in real time. Log presents the event
messages coming from the Chedar nodes. The events are
notifications of certain network events, for example forwarded
queries, new neighbor connections or dropped messages because of
congestion in a Chedar node.

Figure 2. Topology view.

The user can also send commands to the server or to Chedar nodes
via the server by typing commands in the User Interface-to-Server
Message Protocol (UMP) format (for more details see the Section
2.3). The Commands view allows the user to see the sent data and
the received messages from the nodes. Also batch files can be
executed via the commands view. Batch files are useful when a
certain peer-to-peer query pattern and measurement scenario needs
to be executed multiple times.

Figure 3. Graph view.

The UI can be run online as well as offline especially for
demonstrations. For offline use there is a recording feature allowing
the user to record actual monitoring data coming from the server to a
file and later retrieve the recorded data in offline state. The UI also
allows the user to create Chedar node groups and manage
connections.

The functioning of the UI is quite simple. When data is received
from the server it is checked and forwarded to the addressed
component of the UI. The data will be presented to the user in a
form of topology, graph or text depending on the view. Sending data
is also rather straightforward. The user assigns a command and it is
sent to the server for further handling.

2.2 Server
The server program is divided into two main components: stateless
connection manager and stateful data manager. The connection
manager is the part of the server which takes care of all connections.
It forwards the contents of the packets without interpreting them,
only adding metadata about the time the packet was received and
Chedar node’s IP address and port. A packet can arrive to the server
either from the UI or from a Chedar node. It arrives first to the
connection manager which forwards it to the data manager if
necessary, otherwise directly to UI or to Chedar node(s).

The data manager is responsible for temporarily saving data coming
from Chedar nodes and for combining multiple individual replies to
a single reply for UI. For example to construct a neighbor
distribution graph, data manager needs to collect individual
neighbor amounts from Chedar nodes and build the graph data for

UI. This lightweight architecture of the server allows scaling to
hundreds of Chedar nodes.

2.3 Protocols
User Interface, Server and Chedar nodes use three different
protocols for communication. One binary protocol was developed as
a container for two message protocols, one XML protocol for
communication between the server and the Chedar nodes as well as
one XML protocol for communication between the UI and the
server. Both XML protocols are on the top of the binary protocol as
illustrated in Table 1. The binary protocol is always on the top of
TCP.

Table 1. LAYERS OF THE PROTOCOLS.
Message Protocol (GMP or UMP) XML

Packet Transmission Protocol (GPTP) Binary
TCP

1) Guardian Packet Transmission Protocol (GPTP)

The Guardian Packet Transmission Protocol (GPTP) is a binary
protocol used between the UI and the server as well as between the
server and the Chedar nodes. The GPTP packets are composed of a
fixed-size 64-bit header and a data part, which varies in size. The
header identifies the packet as a part of the Guardian-to-Chedar
protocol and specifies the size of the data part in bytes. Without a
specified data size, parsing an incoming XML message from a
stream would be harder. An example of a GPTP message is shown
in Table 2.

Table 2. GUARDIAN PACKET TRANSMISSION
PROTOCOL.

2) Guardian Message Protocol (GMP)

The Guardian Message Protocol (GMP) is used between the server
and the Chedar nodes on the top of the Guardian Packet
Transmission Protocol. Each GMP message is a complete XML
document. The header is a standard XML declaration, and the body
is composed of a root element which specifies the type of message,
and a variable content.

Here is the structure of GMP message:

Header: XML declaration

 <?xml version="1.0" encoding="UTF-8"?>

Body

 Root element: <request/> OR <reply/> OR <event/>

 Content: various requests, replies or events as

 XML elements and/or attributes

There are three types of messages in the Guardian Message
Protocol:

32 bit synchronization header, 0x47324350
(G2CP)

32 bit size field, network byte order, (1234)
Byte data

The request/reply pair forms a synchronous message exchange
initiated by the server. The reply is not mandatory. Event messages
can arrive from the Chedar nodes at any time.

3) User Interface-to-Server Message Protocol (UMP)

The User Interface-to-Server Message Protocol (UMP) is used
between the UI and the server on top of the Guardian Packet
Transmission Protocol. UMP uses similar message structure as
GMP. The difference between UMP and GMP is in the XML
elements and attributes. For example the UMP contains elements for
sending a certain GMP message to all Chedar nodes.

3. P2PSTUDIO IN PEER-TO-PEER
NETWORKS RESEARCH
At first, P2PStudio was developed to collect data from a Chedar
network [1] consisting of tens of workstations. Experimenting with
self-organization of topology and different resource discovery
algorithms however usually requires a controlled environment to
obtain results that are repeatable. Creating exactly same starting
conditions for each test in a network of workstations is problematic,
because of differencies in hardware and network traffic. Also,
having each Chedar node pack and send data over the network is
significantly slower than executing algorithms in a simulator, where
only local data structures are being used.

Therefore, the use of P2PStudio was extended by creating the Peer-
to-Peer Realm (P2PRealm) network simulator [10,6]. P2PRealm is
Java-based and contains functionalities for creating peer-to-peer
network scenarios with different topologies, resource distributions
and query patterns, executing different resource discovery and
topology management algorithms, and collecting various statistics of
the execution to log files. In addition to textual viewing of log files,
P2PStudio can be used for graphical viewing e.g., to plot how
queries spread in the network and what kind of topologies emerge
from the execution of algorithms.

A special use case for P2PStudio and P2PRealm is the development
of the NeuroSearch resource discovery algorithm [11], which is
based on neural networks. Optimizing neural networks requires not
only simulation of a certain scenario once, but usually thousands of
times to reach a near-optimum state in learning. Therefore network
simulators, such as Ns-2 [2], which are based on scripting languages
and mainly developed for detailed protocol studies are not fast
enough. For studying the behavior of neural networks, P2PStudio
provides a view containing the inputs of neural network and the
corresponding output decisions.

4. CONCLUSIONS AND FUTURE WORK
P2PStudio is a well-established research tool for peer-to-peer
networks research providing functionalities for peer-to-peer network
monitoring, controlling and visualization. P2PStudio has been used
with two different peer-to-peer software, Chedar and P2PRealm, for
algorithm development. The centralized architecture of P2PStudio is
a potential bottleneck for scalability in the future when the size of
the P2P networks being studied grows. As a future work we
envision changes in the architecture to support multiple servers as

well as adding new functionalities to UI to determine certain
network characteristics such as diameter, shortest paths and multiple
distinct paths between nodes.

5. ACKNOWLEDGMENTS
The authors would like to thank the other members of the Guardian
student project: Joni Töyrylä, Jussi Rastas and Ville Pentti. Niko
Kotilainen was supported by the InBCT-project and Mikko Vapa
and Annemari Auvinen were supported by the GETA graduate
school.

6. REFERENCES
[1] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and J. Vuori,

“Chedar: Peer-to-Peer Middleware”, Proceedings of the 20th
IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2006), Rhodes Island, Greece, Arpil 2006.

[2] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan K. , X. Ya, and
Y. Haobo, “Advances in network simulation”, IEEE Computer,
Vol. 33, Issue 5, pp. 59-67, 2000.

[3] Cheese Factory – Peer-to-Peer Computing Project,
tisu.it.jyu.fi/cheesefactory.

[4] Guardian project,
www.mit.jyu.fi/opiskelu/sovellusprojektit/guardian/.

[5] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman,
“Scalability Issues in Large Peer-to-Peer Networks – A Case
Study of Gnutella”, Technical report, University of Cincinnati,
2001.

[6] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, and J.
Vuori, ”P2PRealm – Peer-to-Peer Network Simulator”,
Proceedings of the 11th International Workshop on Computer-
Aided Modeling, Analysis and Design of Communication Links
and Networks (CAMAD 2006), Italy, June 2006 .

[7] N. Kotilainen, M. Vapa, M. Weber, J. Töyrylä, and J. Vuori,
"P2PDisCo – Java Distributed Computing for Workstations
Using Chedar Peer-to-Peer Middleware", Proceedings of the
19th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2005), Denver, Colorado, USA, 2005.

[8] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori, "Mobile
Chedar - A Peer-to-Peer Middleware for Mobile Devices",
Workshops Proceedings of the Third IEEE Conference on
Pervasive Computing and Communications (Percom 2005),
pp. 86-90, Kauai Island, Hawaii, USA, 2005.

[9] D. Stutzbach, R. Rejaie, “Capturing Accurate Snapshots of the
Gnutella Network”, Proceedings of the 8th IEEE Global
Internet Symposium, Miami, Florida, 2005.

[10] J. Töyrylä, "Building NeuroSearch - Intelligent Evolutionary
Search Algorithm For Peer-to-Peer Environment", Master's
Thesis, University of Jyväskylä, 3.9.2004.

[11] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J.
Vuori, "Resource Discovery in P2P Networks Using
Evolutionary Neural Networks", International Conference on
Advances in Intelligent Systems - Theory and Applications
(AISTA 2004), Luxembourg, 2004.

[12] WTS Networks, www.wts.fi

Request message is sent by the server to a Chedar or a Workstation
node.

Reply message is sent by a Chedar or a Workstation node to the
server.

Event message is sent by a Chedar node to the server.

