

Challenges and Radiation Performances of Advanced and Emerging CMOS Technologies

Prof. Cor Claeys Fellow IEEE, Fellow ECS

Outline

Basic Radiation Effects & Scaling Trends

- Basic Radiation Effects
- **Low Temperature Operation & Radiation**
- **Trends in Microelectronics**
- **Important Process Modules Impacting Radiation Hardness**

Impact Device Technology on Radiation Performance

- Bulk and SOI FinFETs
- **Ultra Thin Body and BOX (UTBOX)**
- **TunnelFETS (TFETs)**
- Resistive Memories (ReRAMs)
- **SiGe Channel Devices**
- **Ge-based Devices**

Conclusions

Justifications

High Flux environment

Large Hadron Collider (CERN, Berkeley)

- Fusion Reactor in France
- Nuclear facilities (maintenance, robot handling, dismantling...)

Space Application

Radiation particle f(orbit)

South Atlantic Anomaly (SAA) high energetic particles

Radiation in Microelectronics (Packages)

Further Reading

先进半导体材料及 器件的辐射效应

Radiation Effects in Advanced Semiconductor Materials and Devices

> (比) C. Claeys E. Simoen 著 刘忠立 译

Basic Concepts

Ionizing Damage: creation of electron-hole pairs across the band gap

- **Scales with the Linear Energy Transfer (LET) function.**
- □ Important for dielectrics in MOS: gate and field oxide.
- □ Irradiation: Generation electron-hole pairs
 - Linear Energy Transfer (LET) function (in MeV cm²/g)
 - I Gray=1 J/kg=100 rad

Displacement Damage: creation of vacancy-interstitial (V-I) pairs by displacement of a lattice atom

- **Scales with the Non-Ionising Energy Loss (NIEL) parameter.**
- Not so relevant for MOS devices (bipolar devices; diode;...).

Ionization and Displacement Damage =f(particle, energy)

The energy loss rate through ionization and excitation of the Si lattice (LET) and through atomic displacements (NIEL) versus proton energy.

Proton irradiation

For protons only a fraction of 1% of the energy loss goes into displacement processes

Ionizing Damage in MOS

Gate: carries away the charge

Silicon: electron-hole pairs can recombine in the neutral bulk

In case of a p-n junction, the electric field separates electrons and holes. This leads to a transient charging phenomenon

→ Single Event Upsets (SEU)

Permanent ionizing damage only in the dielectric layers: gate oxide, isolation or field oxide and buried oxide (SOI)

Ionizing Damage in MOS

Trapped hole charge has a stronger impact for positive gate bias (nMOS)

- → degradation of nMOS stronger, because holes are drifting towards the Si-SO₂ interface
- → importance of biased radiation testing

Ionizing Damage in MOS

T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci., 50, 483 (2003)

Effects of Oxide Traps

Oxide traps are always positively charged

Related to dangling bond defects

□ **Unpaired electron** on a Si atom that is back-bounded to 3 other Si atoms at the Si/SiO₂-interface

Studied type is amphoteric: can be negatively or positively charged

□ Interface traps can have a significant effect on the potential, mobility and recombination rates at the semiconductor surface

N_{it} – negative in nMOS and positive in pMOS due to the band bending

These radiation-induced defects have been identified by ESR.

Role of hydrogen !!!

PM Lenahan and JF Conley J., J. Vac.Sci. Techol. B 16, pp. 2134-2153 (1998).

Interface traps are positively charged in pMOS and negatively charged in nMOS

Separation Effects of Oxide and Interface Traps

I_{th} – current at threshold

P.J. McWhorter and P.S. Winokur, APL, 48, 133 (1986)

Separation Effects of Oxide and Interface Traps

P.J. McWhorter and P.S. Winokur, APL, 48, 133 (1986)

Annealing – Rebound Effect

- **Device will fail after 1 Mrad due** to the trapped oxide charge ΔV_{OT}
- After annealing the ΔV_{OT} reduces and the device may operate again as holes anneal out
- Further annealing may cause again the device to fail due to the interface charge, which doesn't anneal much during the anneal step (<100°C)</p>
- For high anneal temperatures also the interface traps anneal out
 - **Rebound effect**

Note: For TID effects in CMOS devices the dose rate has no impact

T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci., 50, 483 (2003)

Device Scaling

$$\Delta V_t \sim t_{ox}^2$$

Good TID resistance of the thin Gate oxide

Radiation effects will be caused by parasitic conduction related to Shallow Trench Isolation oxide: Bulk Buried oxide for SOI devices

Occurrence of other radiation related phenomena

Transient Mechanisms

Single Event Upset - SEU

Collected charge may cause 0<->1

Scaling is generally worsens **SEU**: The smaller the memory node the smaller the charge needed for to upset

Single Event Latch Up - SEL

Firing of the parasitic thyristor in CMOS is destructive

Leakage in CMOS Devices

Edge leakage

Inter-leakage

Impact High Energy Ions on gate Oxide

Radiation-Induced Leakage Current (RILC)

Radiation-Induced Soft Breakdown (RSB)

Increase of off-state power consumption

but no real concern

Radiation Induced Leakage Current

Negative J_g - E_{ox} , curves measured before (fresh) and after irradiation for various doses ranging from 4 to 50 Mrad(Si). 6 nm oxide.

- Increase of the low field current between 3and 6 MV/cm
- Can be attributed to RILC which is similar to SILC – trapped holes
- Important to study the involved kinetics
 - RILC has no saturation of current versus dose
 - SILC has a saturation of current versus injected charge.

M. Ceschia A. Paccagnella, A. Cester, A.Scarpa and G. Ghidini, IEEE Trans. Nucl. Sci., 45, pp. 2375-2382 (1998)

Ion Induced Degradation of Gate Dielectrics

- Radiation-induced soft breakdown (RSB) is observed in 3-and 4-nm oxides only after irradiation with high linear energy transfer (LET)
- Only RSB and SEGR (single event gate rupture) appear as the main factors limiting the device lifetime, while RILC can be important for applications as EPROM-like memories

Gate current versus gate voltage (Ig–Vg) measured before and after irradiation on a 3-nm oxide. The two curves referring to RILC have been measured after irradiation with 5.8×10^{10} and 1.5×10^{11} Si ion/cm . The RSB has been obtained after irradiation with 10^7 I ions/cm .

A. Cester, L. Bandiera, M. Ceschia, G. Ghidini and A. Paccagnella, IEEE Trans. Nucl. Sci., 48, pp. 2093-2100 (2001)

Single Event Gate Rupture

L.W. Massengill, B.K. Choi, D.M. Fleetwood, R.D. Schrimpf, M.R. Shaneyfelt, T.L. Meisenheimer, P.E. Dodd, J.R. Schwank, Y.M. Lee, R.S. Johnson and G. Lucovsky, IEEE Trans. Nucl. Sci., 48, pp. 1904-1912 (2001)

Latent radiation Damage in Thin Gate Oxide

Weibull lifetime distribution of MOS capacitors subjected to constant voltage stress at V_{stress} =-4.9 V before and after heavy ion irradiation

J.S. Suehle, E.M. Vogel, P. Roitman, J.F. Conley Jr., J.B. Bernstein and C.E. Weintraub, Appl. Phys. Lett., 80, pp. 1282-1284 (2002)

Latent radiation Damage in Thin Gate Oxide

Weibull lifetime distribution of MOS capacitors subjected to constant voltage stress at V_{stress} =-5.0 V before and after ⁶⁰Co irradiation.

J.S. Suehle, E.M. Vogel, P. Roitman, J.F. Conley Jr., J.B. Bernstein and C.E. Weintraub, Appl. Phys. Lett., 80, pp. 1282-1284 (2002)

Latent Radiation Damage – Ion Fluence

Gate current during CVS at $V_{CVS} = 4.2$ V on three samples with gate area 10^{-2} cm² irradiated with 256-MeV I ions at different fluences Excess gate current Density (J_e) normalized to the ion fluence (ϕ) measured during CVS at V_{CVS} =4.2 V

A. Cester, S. Cimino, E. Miranda, A. Candelori, G. Ghidini and A. Paccagnella, IEEE Trans. Nucl. Sci., 50, pp. 2167 2175 (2003)

100 nm PD SOI Technology 10-20% change f(ion fluence) Staircase Voltage Stress

Gate current measured at $V_g = V_{g,stress}$ during FN injection of devices processed in an 0.1 µm PD SOI technology. $V_{g,stress}$ starts from 2.5 V and increases up to 4 V with 50-mV step every 100 s. The stress was performed on fresh and irradiated devices with two different ion fluences (2.5 and 0.5 I ions/mm²).

A. Cester, S. Gerardin, A. Paccagnella, E. Simoen and C. Claeys, IEEE Trans. Nucl. Sci., 52, pp. 2252-2258 (2005)

65nm Technology

Gate current time to breakdown for irradiated (2.5 I ions/mm²) and non-irradiated FD SOI MOSFETs (W=L = 10 μ m/10 μ m) fabricated in a 65 nm technology with different strain levels. The devices were stressed with a staircase voltage from 2 V to 4 V with 50-mV steps, each lasting 100 s.

A. Griffoni, S. Gerardin, A. Cester, A. Paccagnella, E. Simoen and C. Claeys, IEEE Trans. Nucl. Sci., 54, pp. 2257-2263 (2007)

Heavy Ion Strikes: Microdose Effects

charge build-up in the STI

Defect generation in the oxide

charge build-up in the LDD region

Statistical in nature

S. Gerardin, M. Bagatin, A. Cester, A. Paccagnella and B. Kaczer, IEEE Trans. Nucl. Sci., 53, pp. 3675-3680 (2006)

Radiation Damage

- If kinetic energy > displacement energy: formation of Frenkel pairs.
- Due to atomic displacement lattice defects are formed consisting of vacancies and/or interstitials and possible interactions of point defects with impurity atoms

- **The type of stable radiation defects (RDs) depends on the irradiation temperature.**
- □ In the first instance, the RD concentration scales with the particle fluence

Implantation Damage – Defect Stability

Schematic of vacancy and vacancy-defect pair annealing stages (~15 min isochronal) (Watkins 2000).

Displacement Damage – DLTS Traps

In p-type Si most important traps after RT proton irradiation are:

H4 (0.20 eV, VV or VVO complex) H5 (0.36 eV, C_sO_i or C_iC_s complex)

In n-type Si most important traps after RT proton irradiation are:

E1 (0.17 eV, VO complex) E2 (0.36 eV, VV complex) E3 (0.32 eV, VV or VP complex)

□ Isochronal and isothermal annealing can be used to study the stability of the traps (= info concerning their identity)

Displacement Damage

Electrical parameters of the dominant radiation defects in Si stable at 300 K

Defect	Band gap	\mathcal{C}_{n}	C _p	T Interval
centre	enthalpies ^a	$[\text{cm}^3/\text{s}]$	$[\text{cm}^3/\text{s}]$	[K]
	[eV]			
V-0 ^{0/-}	0.164	$1.4 \mathrm{x} 10^{-8} \mathrm{x} \mathrm{T}^{0.5}$	$8 \times 10^{-8} \times T^{0.7}$	80-108
V-V ^{-/}	0.225	$1.6 \mathrm{x} 10^{-12} \mathrm{x} \mathrm{T}^{1.4}$	$7x10^{-7}$	105-155
$V-V^{0/-}$	0.421	$5.4 \times 10^{-9} \times T^{0.4}$	$2x10^{-6}xT^{-0.3}$	182-266
$\mathrm{V} ext{-}\mathrm{V}^{ ext{+}/0}$	0.194	$>>_{\mathcal{C}_p}$	$2.1 \times 10^{-9} \times T^{0.2}$	104-146
C _i O _i	0.339	$5.1 \times 10^{-23} \times T^{5.2}$	$1.2 \times 10^{-10} \times T^{0.61}$	160-238

 c_n electron capture rate, c_p hole capture rate, T temperature ^aThe trap energy E_T is related to the enthalpy ΔH and entropy ΔS through E_c - E_T = ΔH_T - $T\Delta S_T$

Low Temperature Electronics

Low temperature Electronics

- Liquid Nitrogen Temperature Range (T=77 K): potential for commercial applications (supercomputers) and scientific/space instrumentation (Large Hadron Collider; Charge- Coupled Devices)
- □ Liquid Helium Temperature Range (T=4.2 K): satellite communications and far-infrared focal plane arrays (ISO; HERSCHEL)
- **mK** range: astrophysical applications (bolometers)
Temperature in Space Missions

Ionization Damage – Threshold Voltage Shift

At or below 150 K the trapped holes in the oxide are frozen in. Hardly no recovery takes place

→ the degradation of the flat-band or threshold voltage is higher than at room temperature.

Ionization Damage – Interface Traps

Low Temperature Electronics

Single Event Upset SEU

band gap for lower T, which reduces the numbers of generated e-h pairs.

Radiation-induced Latch up SEL

gain (parasitic) bipolar reduces upon cooling. Some studies have pointed out an optimum operation temperature (~120 K). Will strongly depend on technological details.

Low Temperature Electronics - Summary

The radiation response of CMOS components shows a pronounced temperature dependence, e.g., at cryogenic temperatures, no interface states are formed.

Total-dose damage should be worst case at cryogenic temperatures (no annealing), while the opposite in principle holds for displacement damage.

At cryogenic temperatures, specific effects (kink/ hysteresis) may occur.

Importance of cryogenic radiation testing

Radiation Hardness Microelectronic Components

Motivation Advanced Microelectronics Components for Space COTS important for Space Applications

Moore's Law

Research – Development - Production Scaling Roadmap

Scaling approaches to Cope with Moore's Law

Geometric Scaling 2D scaling through lithography

Circuit Scaling System In Package + Advanced Packaging

Stack of

nanowires

lateral

Wrapped

by gate from all sides

Fin

Architecture Scaling Solutions optimization

Process Innovation and Process Complexity

Cost per Gate

14 nm Intel Process

Intel 14 nm – 13 metal layers

	Metal	Process	Dielectric	Pitch	Layer	Metal	AR
				(nm)	Thx	Thx	
					(nm)	(nm)	
	0	PD SAV	LK CDO	56	70	40	1.4
	1	PD SAV	ULK CDO	70	81	42	1.2
	2	PD SAV	ULK CDO	52	73	40	1.5
	3	PD SAV	ULK CDO	56	76	37	1.3
	4	SAV	Air Gap	80	145	75	1.9
	5	SAV	ULK CDO	100	210	110	2.2
	6	SAV	Air Gap	1 60	310	180	2.3
	7	SAV	ULK CDO	160	380	200	2.5
	8	SAV	ULK CDO	160	400	200	2.5
	9	Via First	LK CDO	252	540	260	2.1
	10	Via First	LK CDO	252	675	375	3.0
	11	Via First	SiO2	1080	1770	1080	2.0
	12	Plate Up	polymer	14000	2	6000	1.3

Airgaps in M4 and M6

SAV: Self-aligned via CDO: Carbon doped oxide **Trends to Increase Device Performance**

MATERIAL DEVICE MATERIAL DEVICE MATERIAL

Scaling- Performance Improvement

Percentage of Performance Increase Gain by Traditional Scaling Gain by Materials & Device Architecture Innovation 180nm 130nm 90nm 65nm 45nm 32nm 28nm 1999 2001 2003 2005 2007 2009 2011 Source: IBM Microelectronics, Intel, IC Insights

Gate Dielectrics

Gate Dielectrics – Replacement SiO₂

Challenges Related to Gate Dielectrics

H. Iwai, Solid-State Electron., 112, 56 (2015)

Strain Engineering

Scaling Technology

>Use of high-κ dielectrics + metal gate + strained Si

S. Datta et al., IEDM 2003, p. 653

Strain Engineering

Hole mobility enhancement factor of Si, Ge, and GaAs as a function of stress. The dashed line is the experimental observation of hole mobility enhancement versus biaxial stress.

Y. Sun, S.E. Thompson and T. Nishida, J. Appl. Phys. 101, 104503 (2007).

Strain Engineering

Strain in MOSFETs

Desired pMOS stress

Enhanced mobility vs. stress induced via wafer bending: biaxial and longitudinal and transverse uniaxial stress.

S.E. Thompson, G. Sun, K. Wu, J. Lim and T. Nishida, IEDM Tech. Dig. p. 221 (2004).

Strain Engineering Approaches

Dual CESL Stressor Process Implementation

CMOS flow implementation

Dual Stressor Process Implementation

CMOS flow implementation

Strain Engineering

Multiple Gate Devices

FinFET on SOI or Bulk

DISCUSS THE RADIATION PERFORMANCE OF DIFFERENT STATE-OF-THE-ART DEVICES

SOI DEVICES AND BULK FINFETs

UTBOX DEVICES

TUNNELFETs

RESISTIVE MEMORIES

SiGe DEVICES

Ge-BASED TECHNOLOGIES

Radiation Hardness Fully Depleted SOI Devices

Fully Depleted SOI Technology

65 nm Fully Depleted Silicon On Insulator technology irradiated with 60 MeV protons at 5x10¹¹ p/cm²

Change in Threshold Voltage for SOI Devices - Dose

Change in Threshold Voltage

Always ΔV_T negative

More pronounced for sCESL

Change in Threshold Voltage

For SOI or sSOI ΔV_T positive

In case of using sCESL DV_T negative
Effect of Radiation on FD SOI Devices

• **PMOS**:

Radiation creates positive charges in the buried oxide

- V_T decrease
- Parasitic transistor turned off
- NMOS:

SOI & sSOI

Radiation creates negative charges in the buried oxide

- V_T increase
- Parasitic transistor turned off

SOI+sCESL & sSOI+sCESL

Radiation creates positive charges in the buried oxide

- **V**_T decrease
- Parasitic transistor turned on

Fully Depleted SOI Devices

Illustration of the I_d - V_{gs} characteristic before and after 60 MeV, $5x10^{11}$ p/cm² proton irradiation and their difference of a SOI+tCESL nMOSFET. W=10 μ m, L=0.25 μ m, V_B=0 V and V_D=25 mV.

Standard Radiation Behavior FD SOI Devices

Radiation Behavior sCESL

	NMOS	PMOS
SOI→ SOI+sCESL	Decrease negative charges	Increase positive charges
sSOI→ sSOI+sCESL	Decrease negative charges	Increase positive charges

The sCESL-layer contains 16 at.% hydrogen

□ Due to the proton irradiation, H⁺ of the sCESL will migrate towards the buried interface.

Reaction Between H⁺ and Dangling Bonds

1. Depassivation of the already passivated dangling bonds

$SiH + H^+ \rightarrow D^+ + H_2$

2. Passivation of the negatively charged dangling bonds $D^- + H^+ \rightarrow SiH$

3. No reaction with the positively charged dangling bonds due to Coulomb repulsion

NMOS (1,2)

Decrease of negative and increase of positive charges PMOS (1,3)

Increase of positive charges

Radiation Behavior Strained SOI

	NMOS	PMOS
SOI→ sSOI	No effect	Decrease positive charges
SOI+sCESL→ sSOI+sCESL	Increase negative charges	No effect

NMOS: sSi counteracts radiation behavior of sCESL

PMOS: radiation behavior of the combined sSi en sCESL induces more positive charges, in this way the radiation behavior of the strained Si alone will disappear

Stress and Radiation

- Assessment of effect of sCESL and strained Si on radiation behavior of SOI transistors
- □ Main effect: Creation of charges at the buried oxide/interface
 - Interface traps: Negatively charged in NMOSFETs Positively charged in PMOSFETs
 - > Trapped hole charge: always positive

Conclusions Strain

sCESL-layer → high hydrogen concentration

NMOS: Passivation of negatively charged interface traps and depassivation already passivated traps

PMOS: only depassivation already passivated trap

strained Si → influence on radiation effect of sCESL

NMOS: Counteract effect of sCESL

PMOS: Enhance effect of sCESL

nMOS: sSOI+sCESL lowest radiation sensitivity

pMOS: sSOI has better radiation behavior compared to SOI

Radiation Hardness SOI and Bulk FinFETs

SOI FinFET

Narrow fin devices

- 5 fins
- W = 25nm
- ▶ L = 60nm
- ▶ H = 65nm

Wide fin devices

- I fin
- ▶ W = 0.9µm
- L = 0.16μm
- ► H = 65nm

I 50nm Buried Oxide

HfSiON gate-dielectric

- Inm SiO₂ + 2nm HfSiON
- EOT=1.5nm

Radiation FinFET – Impact Fin Width

Radiation tolerance increases with decreasing fin width

- More efficient control of the lateral gates over the potential in the Si fin for increasing W_{fin}.
- Decreased influence of the BOX, so that the impact of the radiationinduced charges is reduced for larger W_{fin}

Drain current vs gate voltage curve of multiple-gate FETs processed with an Ω -shaped gate with various fin widths, before irradiation and after 500 krad (SiO₂). The drawn gate length is 70 nm . The bias condition during irradiation was the OFF state.

M. Gaillardin, P. Paillet, V. Ferlet-Cavrois, O. Faynot, C. Jahan, and S. Cristoloveanu, "Total ionizing dose effects on triple-gate FETs," IEEE Trans. Nucl. Sci., 53, 3158–3165 (2006)

FinFETs – Bias/Dose Dependence

Threshold voltage shift vs TID measured on triplegate FETs with different fin width . Different bias conditions during irradiation were applied Bias has a strong impact

ON (gate to VDD) is worst condition for TID

Electric field lines into the BOX for ON-state (gate biased at , other terminals grounded). Red dashed lines correspond to the trapped charge distribution after irradiation (located either at the bottom of the BOX or next to Si Fin)

J.-J. Song, B. K. Choi, E. X. Zhang, R. D. Schrimpf, D. M. Fleetwood, C.-H. Park, Y.-H. Jeong and O.Kim, IEEE Trans. Nucl. Sci., 58, 2871 (2011)

FinFET – Selective Epitaxial Growth

Selective epitaxial growth on the S/D areas (SEG)

Narrow fins introduce a large S/D resistance

SEG needed to increase thickness in all directions and decrease \mathbf{R}_{CON}

FinFET – 45° Rotation

45°

Orientation

Transconductance FinFET – 45° Rotation

Transconductance as function of V_{GS} , for n- and pFinFETs for standard orientation (reference) and 45 ° rotation of the fins. $W_{fin} = 25$ nm, L = 60 nm, $IV_{ds}I = 50$ mV.

SOI FinFET – 45° Rotation

No specific impact of the orientation

Comparison of the effective trap density versus effective trap depth for standard orientation (reference) and 45 ° rotation of the fins. Both a single wide fin ($W_{fin} = 1 \ \mu m$) and 5 fins ($W_{eff} = 0.75 \ \mu m$). No SEG and HfSiON gate. L = 0.15 μm , IV_{ds}I = 50 mV.

Drain Characteristics Proton Radiations - nMuGFET

Front-gate Voltage, V_{GS} (V)

 I_D as a function of V_{GS} , for nMuGFETs, before and after radiation (60 MeV protons) for two different device widths. Tensile stress are used. **Tensile stress improve the performance**

Smaller width device have a better radiation hardness

Drain Characteristics Proton Radiations - pMuGFET

□ Impact compressive stress is limited

Smaller width device have a better radiation hardness

 I_D as a function of V_{GS} , for pMuGFETs, before and after radiation (60 MeV protons) for two different device widths. Compressive stress are used.

Impact Radiation Back-channel Transistor

Degradation of the back-channel transistor due to an 10¹² cm⁻² proton irradiation for non-strained and strained (1.5 GPa tensile) nFinFETs with two different gate lengths.

Strained back-channel transistor

- □ More are more degraded than unstrained
- **Degradation = mobility degradation due to interface traps**
- □ V_T more positive after irradiation (negative charge in nMOS)

Impact Radiation Back-channel Transistor

Degradation = mobility degradation due to interface traps (negative charge in nMOS)

		L=0.15 µm	L=0.9 µm
Pafera irradiation $[am^2/W_{c}]$	Non-strained	620	570
Before inadiation [cm / v·s]	Strained	720	740
After impediation $[am^2/N_{c}]$	Non-strained	570	500
After machation [cm / v·s]	Strained	310	290
Polativa differenza [%]	Non-strained	8	13
Relative difference [%]	Strained	57	61

Mobility degradation of the back-channel transistor before and after 60 MeV 10^{12} p/cm². W_{fin} = 9 mm, Vds = 25 mV and V_{gs} = 0 V.

Impact of Strain in Function of Radiation Level

Stress leads to a lower level of dangling bonds

P. Somer, A. Stesmans, V.V. Afanas'ev, C. Claeys and E. Simoen, JAP 103 (2008) 033703

Low dose irradiations may result in less radiation-induced charges for strained devices due to the lower dangling bonds concentration

Radiation – Subthreshold Swing

$$\Delta \mu = \mu_{\text{post}} / \mu_{\text{pre}}$$

D. Kobayashi, E. Simoen, S. Put, A. Griffoni, M. Poizat, K. Hirose and C. Claeys, IEEE TNS, 58, 800 (2011)

Radiation – Subthreshold Swing

ΔSS comes from charge in the Si/BOX interface due to charged interface traps by radiation

n(**^**) more acceptor-type traps

 $p(\downarrow)$ less donor-type traps

X-Ray Radiation – Subthreshold Swing MuGFETs

- **SS** is lower for strained devices
- SS increases for wider devices
 Poorer control coupling between sidewall gates and channel
- X-ray radiation has less impact for smaller devices
 V_T shift and interface charges
- For nMuGFETs SS increases after radiation: Increased charges increase the off-state leakage current
- **•** For pMuGFETs the off-state current is suppressed More pronounced for wider devices

C.C.M. Bordallo, F.F. Teixeira, M.G. Silveira, J.A. Martino, P.G.D. Agopian, E. Simoen and C. Claeys, Semecond Sci. Techn., 29, 125015 (2014)

Proton Radiation – Subthreshold Swing vs Temperature

60 MeV, 10¹² p/cm²

- **Radiation impacts both** N_{it} **and therefore** SS
- **Strain gives a higher** N_{it}
- □ For p-channel devices reduces back-channel conduction (radiation-induced charges)
- **Low temperature reduces the V**_T and impacts the back-channel conduction

L.F.V. Caparroz, C.C.M. Bordallo, J.A. Martino, E. Simoen, C. Claeys and P.G.D. Agopian, Proc. EUROSOI-ULIS 2017

SOI P-MuGFETs Neutron Radiation

Processing

Radiation

- 200 mm SOI and sSOI (1.5 GPa biaxial strain)
- Si film = 65 nm, BOX = 150 nm
- □ Gate stack: 2 nm HfSiON on 1 nm SiO₂ (EOT = 1.5 nm) + 5 nm TiN covered by 100 nm poly-Si
- SEG at 750°C for S/D

Neutron irradiation at LLN (CYCLONE), Belgium

- **Energy spectra 5 to 45 MeV (peak 20 MeV)**
- □ Fluence: 1.8 x 10¹⁴ n/cm² (1-2% area deviation)
- **Concomitant** γ-rays about 2.4%
- Contacts floating

D. Kobayashi, E. Simoen, S. Put, A. Griffoni, M. Poizat, K. Hirose and C. Claeys, IEEE TNS, 58, 800 (2011)

Gate Current, Drain current, Transconductance – Neutron Irradiations

Gate and drain current in linear operation versus front gate voltage V_{GS} (a) and I_D and g_m versus V_{GS} (b) for a 750 nmx50 nm SOI p-MuGFET in linear operation. The pre-rad (x) curves are compared with the post neutron-irradiation (\blacksquare) characteristics.

E. Simoen, S. Put, N. Collaert, C. Claeys, V. Kilchytska, J. Alvarado and D. Flandre, Proc. SBMicro (2010)

Normalized Drain Current Noise/Input-referred Noise PSD – Neutron Irradiations

Normalized drain current noise spectral density versus drain current (a) and input-referred noise spectral density S_{VG} (b) at a frequency f=25 Hz for a 50 nm SOI p-MuGFET before (x) and after (\blacksquare) neutron irradiation.

E. Simoen, S. Put, N. Collaert, C. Claeys, V. Kilchytska, J. Alvarado and D. Flandre, Proc. SBMicro (2010)

Normalized Drain Current Noise/Input-referred Noise PSD – Neutron Irradiations

- **No impact of radiation on LF noise performance**
- □ LF noise caused by number fluctuation (McWhorter) related to oxide traps within 1-2 nm from the Si/SiO₂ interface
- $\Box Increased S_{VG} for negative V_{GS}$

increase in series resistance ? increase in gate current?

E. Simoen, S. Put, N. Collaert, C. Claeys, V. Kilchytska, J. Alvarado and D. Flandre, Proc. SBMicro (2010)

Gate Current, Drain current, Transconductance – Neutron Irradiations (Case 2)

Gate and drain current in linear operation versus front gate voltage V_{GS} (a) and I_D and g_m versus V_{GS} in function of V_{GS} (b) for a 750 nmx900 nm SOI p-MuGFET in linear operation. The pre-rad (x) curves are compared with the post neutron-irradiation (\blacksquare) characteristics.

E. Simoen, S. Put, N. Collaert, C. Claeys, V. Kilchytska, J. Alvarado and D. Flandre, Proc. SBMicro (2010)

Normalized Drain Current Noise/Input-referred Noise PSD – Neutron Irradiations (Case 2)

Normalized drain current noise spectral density versus drain current (a) and input-referred noise spectral density S_{VG} (b) at a frequency f=25 Hz for a 900 nm SOI p-MuGFET before (x) and after (\blacksquare) high-energy neutron irradiation.

E. Simoen, S. Put, N. Collaert, C. Claeys, V. Kilchytska, J. Alvarado and D. Flandre, Proc. SBMicro (2010)

Gate Current, Drain current, Transconductance – Neutron Irradiations (Case 3)

Gate and drain current in linear operation versus front gate voltage V_{GS} (a) and I_D and g_m versus V_{GS} in function of V_{GS} (b) for a 750 nmx150 nm sSOI SOI p-MuGFET in linear operation. The pre-rad (x) curves are compared with the post neutron-irradiation (\blacksquare) characteristics.

E. Simoen, S. Put, N. Collaert, C. Claeys, V. Kilchytska, J. Alvarado and D. Flandre, Proc. SBMicro (2010)

Normalized Drain Current Noise/Input-referred Noise PSD – Neutron Irradiations (Case 3)

Normalized drain current noise spectral density versus drain current (a) and input-referred noise spectral density S_{VG} (b) at a frequency f=25 Hz for a 150 nm sSOI p-MuGFET before (x) and after (■) high-energy neutron irradiation.

E. Simoen, S. Put, N. Collaert, C. Claeys, V. Kilchytska, J. Alvarado and D. Flandre, Proc. SBMicro (2010)

Conclusion SOI p-FinFETs Neutron Irradiations

There is statistical distribution of the post-irradiation performance

- Some devices have a catastrophic degradation
- Smaller part of the devices is hardly affected
- Some devices even have a lower gate leakage current and reduced LF noise behavior
- **Noise can be caused by defects in the nitride spacer or the sidewall oxide**

Re-ordering or curing effect

There is no impact of the strain observed

Bulk FinFET

Radiation BRIGITTE-facility I0kGy (IkGy/h) T=328K Floating contacts

300 mm Cz Si, L = 65 nm, W = 20-35 nm

Dielectric: I nm SiO₂ + 2.6 nm 40% HfSiON

Gate: 5 nm TiN + 100 nm poly-Si

SEG source/drain
Radiation Bulk FinFET – Impact Fin Width

Radiation tolerance increases with increase fin width Radiation-Induced Narrow Channel Effect (RINCE)

 $I_D - V_{GS}$ characteristics as a function of dose for irradiation at a dose rate of 31.5 krad(SiO₂)/min for a 70 nm 5-fin bulk FinFET for three different fin widths. $V_{DS} = 50$ mV.

I. Chatterjee, E.X. Zhang, B.L. Bhuva, R.A. Reed, M.L. Alles, N.N. Matherme, D.R. Ball, R.D. Schrimpf, D.M. Fleedwood, D. Linten, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 61, 2951 (2014)

Radiation Bulk FinFET – Impact Fin Width

Off-Current increase for smaller Width and higher dose

Off-state current ($V_{GS} = 0$ V) as function of the irradiation dose for a 70 nm 5-fin bulk FinFET with different fin widths. Measurement done at V_{D}

I. Chatterjee, E.X. Zhang, B.L. Bhuva, R.A. Reed, M.L. Alles, N.N. Matherme, D.R. Ball, R.D. Schrimpf, D.M. Fleedwood, D. Linten, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 61, 2951 (2014)

Radiation Bulk FinFET – Impact Fin Length

Radiation tolerance increases with increasing fin length

Off-state current ($V_{GS} = 0$ V) as function of the irradiation dose for a 5-fin bulk FinFET with different fin lengths. The fin width is 40 nm. Measurement done at $V_{Ds} = 50$ mV.

I. Chatterjee, E.X. Zhang, B.L. Bhuva, R.A. Reed, M.L. Alles, N.N. Matherme, D.R. Ball, R.D. Schrimpf, D.M. Fleedwood, D. Linten, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 61, 2951 (2014)

Bulk FinFETs – Degradation Mechanism

- Creation of charges in the shallow trench isolation
- Positively trapped holes
 PMOS: interface traps also positively charged
- Parallel channel in the transistor affected

Positive Charge in Bulk FinFET

Drain current and transconductance as a function of gate voltage before and after radiation of a bulk (a) and SOI pFinFET (b) with a single fin (W_{FIN} = 885 nm, L= 165 nm, V_{DS} = 50 mV). ⁶⁰Co irradiation of 10 hours at a dose rate of 1 kGy/hr.

Degradation of wide fin SOI MuGFETs much higher

SOI versus Bulk FinFET

Degradation increases when fin width increases

 Degradation increases when fin width decreases

SOI Different Design Concept

SOI versus Bulk FinFET – Conclusion Gamma Radiation

Gamma radiation behavior of bulk pMuGFETs

- Radiation creates positive charges in the STI
- Affects parallel channel in the fin of the MuGFET

Radiation hardness of bulk pMuGFETs increases when fin width increases

Opposite to behavior of SOI MuGFETs

SOI versus Bulk FinFET - SEE Pulsed Laser Induced Transient Current

F. El-Manouni, R.A. Reed, R.D. Schrimpf, D. McMorrow, E.X. Zhang, K.F. Galloway, E. Simoen, C. Claeys, W. Xiong and S. Cristoloveanu , IRPS conf., Monterey 2011

SOI versus Bulk FinFET Pulsed Laser Induced Transient Current

Semi log curves showing charge collected (C) for bulk (triangles) and SOI (squares) FinFETs as a function of laser energy.

Most of the charge collected in the SOI FinFETs was generated in the fins.
Most of the charge collected in bulk FinFETs was generated in the substrate.

Diffusion in bulk FinFETs

SOI FinFETs more suitable to suppress SEE than Bulk FinFETs as the BOX layer isolates the active region from the substrate and consequently reduces the collection volume

F. El-Manouni, E.X. Zhang, R.D. Schrimpf, R.A. Reed, KF. Galloway, D. McMorrow, E. Simoen, C. Claeys, S. Cristoloveanu and W. Xiong, Proc. IRPS Conf., 883 (2011)

Comparison For Different Technologies

Collected charge vs laser pulse energy (SPA) obtained on several planar single-gate (grey symbols and 3D multiple-gate (colored symbols) technologies.

E. Simoen, M. Gaillardin, P. Paillet, R. Reed, R. Schrimpf, M. Ales, F. El-Mamouni, A. Griffioni and C. Claeys, IEEE TNS, 60, 1970 (2013)

UTBB SOI Devices

UTBB Devices

300 mm

Dielectric: 5 nm SiO₂

Gate: 5 nm PEALD TiN + 100 nm poly-Si

t_{BOX} = 10 nm t_{Si} = 10 or 20 nm

Thin BOX positive effect.

Thin Si film increases coupling front- and back-interface.

UTBB Devices

 V_T shifts front-gate transistor under different

bias conditions. Max V_T shift for HOLD DATA

bias (front and back positive bias).

IRRADIATION BIAS CONDITIONS

$V_{FG}(V)$	V _{BG} (V)	$V_D(V)$	$V_{S}(V)$	Bias
1	0	0	0	ON
0	0	1	0	OFF
0	1	1	1	PASS
1	1	0	0	HOLD DATA for
				FBRAMs

Effect back-gate bias 100 200Ö 300 400500 VTFG pre-rad - VTFG post-rad (mV) VBG=-2V -50 VBG=0V -100VBG = 2V-150 -200TID @ -250 V_{FG}=V_{BG}=1V $V_S = V_D = 0V$ -300 -350 Total Dose in krad (SiO₂) -400

Lower shift for lower V_B. This increases the retention time of 1T- FBRAM cells.

N. N. Mahatme, E. X. Zhang, R. A. Reed, B. L. Bhuva, R. D. Schrimpf, D. M. Fleetwood, D. Linten, E. Simoen, A. Griffoni, M. Aoulaiche, M. Jurczak, and G. Groeseneken, IEEE Trans. Nucl. Sci., 59 2966 (2012)

 $\Delta VT_{FG} =$

Performance – Retention Time

Retention time distribution of 13 1-T FB UTBOX cells.

N.N. Mahatme et al., presented at NSREC 2012

Conclusions FinFETs and UTBB SOI

D Positive trapped charge in the BOX triggers the back-channel n-transistor, increasing the gm. Leads to a turn-off of the p-channel.

Strong impact of the back-channel voltage on the radiation performance.

Different radiation-hard design for SOI and Bulk FinFETs

□ The thin buried oxide makes FDSOI devices more tolerant to radiation. Due to strong coupling effects between both interfaces, any radiation-induced degradation at one interface affects the other interface, so the quality of the Si/BOX interface must be carefully controlled.

Radiation Hardness SOI – Scaling Trend

Reduced channel doping

□ Isolation oxide, spacers

Different architecture

Technology Node

Commercial Technology TID response of off-state current for a dos of 1 Mrad (SiO2) versus technology scaling showing vulnerability turnaround after 32 nm

H. Hughes, P. McMarr, M. Alles, E. Zhang, C. Arutt, B. Doris, D. Liu, R. Southwick and P. Oldiges, 2015 IEEE Radiation Effects Data Workshop (REDW))

TunnelFETs

TunnelFET (TFET)

Vth

- Based on PIN Diode technology
- Reduced short-channel effects
- Lower subthreshold swing
 - Due to different mechanism of conduction: Tunneling
 - May be less than 60 mV/dec

nTunnelFET – Band Gap

TFET - Conduction Mechanism

TFET - Conduction Mechanism

TFET - Conduction Mechanism

Choice TFET Material

□ tunneling probability ~ ($E^2m_r^{1/2}E_g^{-0.5}exp(-A_g^{-1.5})$) $E_{g,Si} = 1.12 \text{ eV}$ $E_{g,Ge} = 0.66 \text{ eV}$

□ - *I*-*V* curves show:

*I*_{ds,Ge} ≈ 100 *I*_{ds,Si}

 smaller bandgap improves tunneling, but want silicon-based TFET...

Remark: Ge TFET-curve is shifted to the left for easier comparison

Hetero-structure TFET

Radiation SOI p-TFETs

Pre- and post-irradiation (1 Mrad(Si) protons) drain current as a function of drain voltage for a W = 1 μ m, L = 150 nm pTFET device.

About 10% reduction in drain current for L = 150 nm

H.L.F. Torres, J.A. Martino, R. Rooyackers, A. Vandooren, E. Simoen, C. Claeys and P. G. D. Agopian, Proc. SBMicro 2017

Radiation SOI p-TFETs - Simulation

Charge sheet at the front- and back interface

Output characteristic of a simulated W/L = $1/0.15 \mu m pTFET$ considering fixed charges at front and back interface

H.L.F. Torres, J.A. Martino, R. Rooyackers, A. Vandooren, E. Simoen, C. Claeys and P. G. D. Agopian, Proc. SBMicro 2017

Radiation SOI p-TFETs - Simulation

Charge sheet at the front- and back interface

Only slight shift in the channel region
 Strong impact on the current due to the exponential dependence of the tunneling probability: Increase ON current

$$T_{BTBT} = exp\left(-\frac{4\lambda\sqrt{2m^*E_g^3}}{3qh(E_g + \Delta\Phi)}\right)$$

Radiation-induced charges reduce the surface potential and thus the tunneling probability

Front interface energy bands diagram along device channel for different fixed oxide charges conditions

H.L.F. Torres, J.A. Martino, R. Rooyackers, A. Vandooren, E. Simoen, C. Claeys and P. G. D. Agopian, Proc. SBMicro 2017

Radiation SOI p-TFETs - Simulation

Charge sheet at the front- and back interface

Strong shift in the channel region

Back interface energy bands diagram along device channel for different fixed oxide charges conditions

H.L.F. Torres, J.A. Martino, R. Rooyackers, A. Vandooren, E. Simoen, C. Claeys and P. G. D. Agopian, Proc. SBMicro 2017

Radiation SOI p-TFETs – Length Impact

Drain current as a function of drain voltage for a $W = 1 \mu m pTFET$ device

About 8% reduction in drain current for L = 250 nm and 2% for L=1 μ m

H.L.F. Torres, J.A. Martino, R. Rooyackers, A. Vandooren, E. Simoen, C. Claeys and P. G. D. Agopian, Proc. SBMicro 2017

Radiation SOI p-TFETs

On-current reduction due to the irradiation as a function of channel length

H.L.F. Torres, J.A. Martino, R. Rooyackers, A. Vandooren, E. Simoen, C. Claeys and P. G. D. Agopian, Proc. SBMicro 2017

Resistive Memories (ReRAMs)

Radiation Resistive Memories (ReRAMs)

T.E. + ZrO_x (5nm) V_0 O^{2-} V_0 O^{2-} V_0 O_0 HfO_x (3nm) O_0 O_0

Valence Change Memory (VCM)

(a) The conducting path is generated by applying the positive SET voltage during LRS. (b) The conducting path is oxidized by oxygen migration due to the application of the RESET voltage. (c) and (d) The oxidized region expands as the negative RESET voltage is increased.

D. Lee, J. Lee, M. Jo, J. Park, M. Siddik and H. Hwang, IEEE Electron Device Lett., 32, 964, (2011)

- **Concentration oxygen vacancies is important**
- **Radiation can break Hf-O bonds resulting in more oxygen vacancies**

- Electron
- Original oxygen vacancy
- Oxygen vacancy created by radiation
- Non-lattice Oxygen created by radiation

- Electron
- Original oxygen vacancy
- Non-lattice Oxygen created by radiation
- X Recombination of Oxygen ions and Vacancies

Upon cycling after radiation, the radiation [V] in HfOx, located far from the filament, are not recovered, and therefore lead to an average decrease of HRS resistance. When in HRS [as shown in (a)], with a partial filament present, the induced oxygen vacancies aid connection of the filament upon SET. When in LRS [(b)], nonlattice oxygen can recombine with oxygen vacancies in the filament and cause rupturing.

R. Fang, Y. Gonzalez Velo, W. Chen, K.E. Holbert, M.N. Kozicki, H. Barnaby and S. Yu. Appl. Phys. Lett. 104, 183507 (2014)

Proton Radiation Hardness Resistive Memories (ReRAMs)

Valence Change Memory (VCM)

(left) Average V_{set} (in black) and Vreset (in red and (right) average R_{off} (in black) and R_{on} (in red) of all devices at three total doses in VCM ReRAMs. The dashed lines are used as a visual reference to average pre-radiation values

```
    Radiation has no impact on V<sub>set</sub> and V<sub>reset</sub>
    R<sub>off</sub> and R<sub>on</sub> decrease slightly for high dose radiation
```

H. Xiaoli, W. Wei, B, Butcher, S. Tanachutiwat and R.E. Geer, IEEE Trans. Mucl. Sci. 59, 2550 (2012)

TiN/HfO₂(20 nm)/TiN

Very Hard

γ-Radiation Hardness Resistive Memories (ReRAMs)

Valence Change Memory (VCM)

TiN(50 nm)/HfO_x(10 nm)/Pt(50 nm)

(a) Resistance states evolution with different c-ray doses for 20 samples of 55 lm2 (the upper edge of the box shows the 75% of the distribution, and lower edge shows the 25% of the distribution).
(b) Resistance comparison before and after irradiation for all the 60 samples.

Very Hard

R. Fang, Y. Gonzalez Velo, W. Chen, K.E. Holbert, M.N. Kozicki, H. Barnaby and S. Yu. Appl. Phys. Lett. 104, 183507 (2014)

I-Ion Radiation Hardness Resistive Memories (ReRAMs)

Valence Change Memory (VCM)

TiN(10 nm)/HfO_x(5 nm)/TiN(35 nm)

Cumulative probability distribution of the set and reset voltages for cells with different sizes, before and after irradiation with iodine up to a fluence of 2.2·10⁹ cm⁻². These cells were irradiated in both HRS and LRS state

M. Alayan, M. Bagatin, S. Gerardin, A. Paccagnella, L. Larcher, E. Vianello, E. Nowak, B. De Salvo and L. Perniola, IEEE Trans. Nucl. Sci. 64, 2018 (2017)
Radiation Hardness Resistive Memories (ReRAMs)

Electrochemical metallization memory (EMC) Programmable metallization cells (PMC) Conductive-bridge random access memory (CBRAM) Cation-based devices

During the OFF state, the Cu-doped ECM cell has no filaments present. During the SET operation, the Cu ions from the top electrode dissolve into the switching layer to Cu⁺ and a filament is formed at the counter electrode (Pt) due to the applied bias. This continues until a complete metallic filament connects the top and bottom electrodes, resulting in the ON state. The process can be reversed by changing the applied bias, causing the filament to rupture (RESET).

Radiation-induced vacancies in the ECM ReRAMs inhibit the formation of the metallic filament through internal field reduction due to charge trapping

I. Valov and M.N. Kozicki, IEEE Trans. Nucl. Sci, 6, 2862, (2013)

Proton Radiation Hardness Resistive Memories (ReRAMs)

Electrochemical Metallization Memory (EMC)

Pt/HfO(40 nm):Cu/Cu

200 krad/s at a H⁺ ion energy of 1 MeV

(left) Average V_{set} (in black) and Vreset (in red and (right) average R_{off} (in black) and R_{on} (in red) of all devices at three total doses in ECM ReRAMs. The dashed lines are used as a visual reference to average pre-radiation values

```
 Radiation increases V<sub>set</sub> and IV<sub>reset</sub>I
 R<sub>off</sub> decreases and R<sub>on</sub> increases slightly for high dose radiation
```

H. Xiaoli, W. Wei, B, Butcher, S. Tanachutiwat and R.E. Geer, IEEE Trans. Mucl. Sci. 59, 2550 (2012)

Radiation Hardness Resistive Memories (ReRAMs)

Percentage changes and changes in standard deviation after radiation at TID of 1.5 Grad(Si) in average parameters. The values in percentage are all normalized to the pre-radiation values.

ECM devices more radiation sensitive than VCM ones

TID Radiation improves uniformity resistive switching in VCM and degrades for ECM

H. Xiaoli, W. Wei, B, Butcher, S. Tanachutiwat and R.E. Geer, IEEE Trans. Mucl. Sci. 59, 2550 (2012)

Radiation Hardness Resistive Memories (ReRAMs)

- **Overall ReRAMs have a very good radiation hardness**
- **Very high TID doses have to be used to see some effects**
- □ Research has to be done to investigate the possible impact of the used materials (e.g. TaO_x, HfO_x, TiO_x, SiO_x) and the technology reproducibility
- Pre-radiation variations over the wafer and from wafer to wafer must be taken into account
- □ For metal-doped chalcogenide EMC cells phot doping can occur
- **Dose rate effects have been observed for very high dose rates**
- Recent review on state-of-the-art developments:
 Y. Gonzalez-Velo, H.J Barnaby and M.N Kozicki, Semicond. Sci. Technol. 32, 083002 (2017)

SiGe Devices

Radiation Conditions

SiGe Technology

60 MeV Proton irradiation on 300 mm wafers

- $\Box \qquad \text{Dose rate: } 3x10^8 \text{ p/cm}^{-2}\text{s}^{-1}$
- **Total dose: up to 3x10^{12} p/cm²**
- Louvain-La-Neuve (Belgium)

Pre-Radiation Wafer Preparation

Different wafer zones on the 300 mm wafer (irradiated: L, C and R; references: T and B). Two wafers are fixed together and inserted in the proton-beam setup shown in the right two figures

Wafer Setup on Irradiation Apparatus <Front side> <Back side>

Threshold Voltage p-Channel Devices

Average values of the pre- and post-irradiation linear threshold voltage at V_{DS} = -50 mV (a) and saturation voltage at V_{DS} = -1 V (b) versus p-channel gate length.

Slightly positive change Negative charge in oxide or halo de-activation

Statistical p-Channel Threshold Voltage distribution

Decrease in V_{Tlin} and wider distribution

Current in Linear Region and Saturation

Determination V_{Tlin}

 V_{Tsat} (at $V_{DS} = 1V$) from V_{Tlin}

On-Current and K₀ Factor p-Channel FETs

Average values of the pre- and post-irradiation on-current (a) and K_0 value (b) versus p-channel gate length.

Reduction in on-current Mobility reduction or series resistance increase

Statistical p-Channel On-Current distribution

Decrease in I_{on} (25% narrow and 10% longer devices)

Increase in dispersion

Statistical n-Channel Threshold Voltage distribution

Decrease/Increase in V_{Tlin} for both device lengths wider distribution

Statistical n-Channel On-Current distribution

Decrease in I_{on} (10% narrow and 12% longer devices) and increase of about 3 in dispersion

Also degradation of the I_{off} observed

Correlation I_{on} and V_{Tlin} , V_{Tsat} and K_0 for n-Channel

- **Only some correlation for K**₀
- 30% of the devices degraded by the proton irradiation

AFTER

BEFORE

Correlation Ion and V_{Tlin}, V_{Tsat} and K₀ for p-Channel **Devices**

- **Some correlation for V_{Tlin} and K₀**
- **Less for V**_{Tsat}
- **20% degraded devices**

K₀ Distribution for p-Channel Devices

- **Distribution functions for both the good devices and the outliers**
- **The I**on degradation correlated with K₀
- **Gaussian distribution not the best (bimodal Gaussian)**

Radiation Model for p-Channel Devices

Analysis of the outlier devices

On-current degradation only in saturation: *series resistance*

Trapping in the spacer oxide: impact on LDD region

Radiation Model/2

Positive shift of the threshold voltage Displacement damage impacting the As doping Impact of hydrogen – passivation effect?

No change in subthreshold slope: No interface damage

Radiation Model n-Channel Device

Slight increase in subthreshold slope: Interface traps which have an acceptor nature in nMOSFETs (increase V_T)
 Slight decrease in linear threshold voltage
 Strong reduction of the saturation threshold voltage

More likely V_T shift caused by positive trapping in the gate dielectric Influenced by the capping layer used

Evolution of Ge Devices

Challenges for Ge MOSFETs

Exploration Different Ge Devices

PLANAR

J. Mitard et al., IEDM 2008, p. 873

J. Mitard *et al.*, Jpn. J. Appl. Phys., 50, 04DC17 (2011)

R. Cheng et al., IEDM 2013, 653

FinFET

J. Mitard et al., IEDM 2014, 418

TFET NISI p* c-Ge i-Si gate

R. Rooyackers et al., IEDM 2013, 92-94

50 nm

n⁺ substrate

GATE-ALL-AROUND

← TiN

- HfO

Ge Technology

2 μ m Ge (TDD ~ 10⁸ cm⁻²) 4 nm HfO₂ (EOT= 1.2 nm) 10 nm TaN/70 nm TiN 550°C JA (x_j = 80 nm) Ni germanidation

Ge Technology

Technological Parameters

- **Epitaxial Si:** Thickness (5 or 8 monolayers): Deposition Temperature: 350°C or 500°C
- □ Halo implant conditions: As, 80 keV, 3.5, 5 or 6x10¹³ cm⁻²
- **Extension:** B or BF₂

Further Reading

C. Claeys and E. Simoen, "Germanium-Based Technologies: From Materials to Devices", Elsevier, 2007.

Radiation Conditions

Ge Technology

Wafer level, 10 keV ARACOR x-rays Gate bias = 1.3 V, other terminals grounded Cumulative x-ray dose: 3-5 Mrad(SiO₂) Dose rate: 31.5 krad(SiO₂)/min Vanderbilt University

Radiation Performance Ge Devices

Radiation impact on (a) source current versus drain voltage at different gate voltages and (b) subthreshold drain current vs. gate voltage at V_D = -100 mV for a pMOSFET with W/L = 9.8 µm/10 µm

No stretch-out of subthreshold region: Low radiation-induced interface traps
 OFF current increases as function of TID
 Little change in ON Current

S.R. Kulkarni, R.D. Schrimpf, K.F. Galloway, R. Arora, C. Claeys and E. Simoen, IEEE Trans. Nucl. Sci., 56, 1926 (2009)

Radiation Performance Ge Devices – Threshold Voltage

Threshold voltage shift ΔV_{th} , interface trap charge voltage shift ΔV_{it} , and oxide trap charge voltage shift ΔV_{ot} (a) as a function of irradiation and (b) as a function of isothermal annealing time at room temperature. All devices have $W/L = 9.8 \ \mu m/0.8 \ \mu m$.

C. X. Zhang, S. A. Francis, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, K. F. Galloway, E. Simoen, J. Mitard and C. Claeys, RADCES 2010

Radiation Performance Ge Devices – Noise Behavior

Excess drain-voltage noise power spectral density S_{Vd} as a function of frequency for (a) Ge pMOS transistors with 5 Si monolayers and $W/L= 9.8 \ \mu m/10 \ \mu m$, and (b) Ge pMOS devices from another wafer in the same process lot, which had 8 Si monolayers. Impact of room temperature annealing.

The increase in noise is lower for a thicker Si monolayer and the annealing is more complete

C. X. Zhang, S. A. Francis, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, K. F. Galloway, E. Simoen, J. Mitard and C. Claeys, RADCES 2010

Radiation Performance Ge Devices

Radiation Performance Ge Devices

Increase in the off-state current is related to leakage current between the reverse-biased drain and the substrate. For Si this due to charge trapped in the isolation oxide (Si/SiO₂ sidewall of the trench).

S.R. Kulkarni, R.D. Schrimpf, K.F. Galloway, R. Arora, C. Claeys and E. Simoen, IEEE Trans. Nucl. Sci., 56, 1926 (2009)

Radiation Performance Si Devices

Off-state leakage as a function of TID. Saturation of I_{off} for TID > 600 Krad at a leakage current in the order of 10^{-7} A.

Increase in the off-state current is due to charge trapped in the isolation oxide (Si/SiO₂ sidewall of the trench)

I.S. Esqueda, H.J. Barnaby and M.L. Alles, IEEE Trans. Nucl. Sci., 52, 2259 (2005)

Cause for Wafer Leakage

Current Density vs Perimeter/Area

$$\mathbf{J}_{\mathbf{A}} + \mathbf{J}_{\mathbf{P}} \left(\mathbf{P} / \mathbf{A} \right) = \mathbf{I} / \mathbf{A}$$

J_A: Area current density J_P: Perimeter current density

Slope change (intercept constant) implies surface generation dominates

S.R. Kulkarni, R.D. Schrimpf, K.F. Galloway, R. Arora, C. Claeys and E. Simoen, IEEE Trans. Nucl. Sci., 56, 1926 (2009)

Perimeter Current Density vs Dose

Peripheral current density as a function of dose for a set of diodes with different geometries

S.R. Kulkarni, R.D. Schrimpf, K.F. Galloway, R. Arora, C. Claeys and E. Simoen, IEEE Trans. Nucl. Sci., 56, 1926 (2009)

Radiation Performance Ge Devices

Influence of the halo dose and the thickness of the Si capping layer as a function of total dose for a pMOSFET with W/L = 9.8 μ m/10 μ m.

R. Arora, E. Simoen, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, K.F. Galloway, B.K. Choi, J. Mitard, M. Meuris, C. Claeys, A. Madan and J.D. Cressler, IEEE Trans. Nucl. Sci., 57, 1933 (2010)

Mobility Comparison

8 Si ML devices do not show significant mobility degradation
Devices with 5 Si ML shows significant mobility degradation

Radiation Performance Ge Devices

Impact of the number of Si MLs and their deposition temperature on the pre-irradiation interface trap density.

Pre-Radiation Performance Ge Devices – 1/f Noise

Pre-irradiation noise spectral density for the devices with different halo doping concentrations and thickness of Si capping layer.

C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, K.F. Galloway, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 57, 3066 (2010)

Radiation Performance Ge Devices – Oxide Traps

Radiation Performance Ge Devices – Interface Traps

Annealing Performance Oxide and Interface Traps

Radiation Performance Ge Devices – 1/f Noise

C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, K.F. Galloway, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 57, 3066 (2010)

Radiation Performance Ge Devices - ΔN_{it}

 ΔN_{it} as a function of (a) total dose and (b) room-temperature annealing timefor a Ge pMOS device with W/L = 9.8 μ m/0.8 μ m.

C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, K.F. Galloway, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 57, 3066 (2010)

Radiation Performance Ge Devices – Bulk Traps

C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, K.F. Galloway, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 57, 3066 (2010)

X-Ray Radiation Ge Devices

Bulk current leakage I_B as a function of gate voltage V_G (a) as a function of irradiation and (b) as a function of isothermal annealing time at room temperature.

C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, K.F. Galloway, E. Simoen, J. Mitard and C. Claeys, IEEE Trans. Nucl. Sci., 57, 3066 (2010)

Conclusions Ge Technology

- The processing parameters (Si monolayers thickness and deposition temperature, halo conditions ...) have an impact on the radiation performance
- **Radiation increases the interface trap density and the border traps**
- Radiation-induced charge is Ge is higher than in Si devices, but still rather limited.
- **Room temperature annealing has a positive impact**

General Conclusions

- Both the SiGe and the Ge technologies are sufficient radiation hard for space applications from a total dose point of view
- Radiation-induced variability is superimposed on the process-induced variability
- Radiation of 300 mm wafers enables to investigate a large number of devices and to increase the statistics
- Single Event Effects should also be investigated and may become dominant

